
String Deduplication in Virtual Machines

Background

Research in automatic memory management aims to optimize the heap
structure in order to perform less collection, shorter collection phases
and to result in less fragmentation. However the information needed in
order to accomplish this increases the heap size and is therefore an
addition to the problem. An attempt to make up for the additional space
needed is to provide a better execution time.

The Java heap structure shows that a large percentage of objects
stored on the heap are strings. The number averages at 20% in most
applications, but can get as high as 40% in special cases such as the
J2EE application server. This project aims to use the heap object
structure in general and the string object structure specifically in order to
improve the memory use of the Java VM.

Related Work

String objects in Java are immutable. Immutable objects have the
specific property that they can never change their content. If a change
of the object is requested by the application, a new object with that
content is created and a reference to the new object is written into the
application reference. This is used to gain an advantage by multiple
mechanisms in the Java VM such as the string table or the
.substring() command.

Research on strings and string deduplication took several different
approaches. As strings build the majority of the heap, researchers
suggested for example to collect strings first in order to check if this
would free enough space to continue execution. By doing this, the
authors were able to reduce the garbage collection time as the not all
objects had to be processed. Other research suggest a deduplication
based on offline profiling. It demonstrates a considerable speedup once
the training stage is completed and the JVM is trained on an application.

Motivation

The string table approach currently used in virtual machines creates a
large benefit for string objects during allocation time and decreases the
memory usage of the application. However, it does not cover all of the
strings created. Strings created using the new key word as well as
constructed strings remain unaffected.

An initial analysis of the objects on the heap while running SPECjbb2005
and SPECjbb2013 revealed that some applications have a large amount
of duplicate strings even after the deduplication performed by the string
table and .substring(). Figure 1 and show the result of a complete
analysis of all alive strings after each garbage collection. The graphs
show the percentage of duplicate strings encountered as well as the
possible heap space reduction for SPECjbb2005.

Approach

Our approach proposes an additional step during the traversal of the
objects during the garbage collection phase. The idea is to store and
compare all string objects encountered. In cases where duplicate string
are found, they can be deduplicated. The flow of garbage collection will
change to be as shown in Figure 2. The deduplication is performed by
reusing the character arrays used for a string object while keeping all
other header field parameters as they were. This method mantains the
behavior described in the language specification, but potentially reduces
the memory used by string objects.

Future Work

The current state of the project is debugging and the evaluation process
can begin in near future. The most interesting metrics are the memory
impact and the computation time cost of the additional program flow.

Konstantin Nasartschuk, Kenneth B. Kent, Dane Henshall
University of New Brunswick, IBM Canada

Faculty of Computer Science

{kons.na, ken}@unb.ca, dane_henshall@ca.ibm.com

Figure 1: String Duplicates in specJBB 2005

Figure 2: String Deduplication Flow

