
A Monitor-based Synchronization Approach for
Packed Object Data Model

Introduction
Packed object support is an experimental enhancement for Java in the
IBM J9 Virtual Machine. With packed object support, users gain great
control over the layout of objects in memory. However, due to the
change in the object data model, traditional Java synchronization
mechanisms do not apply to the packed object data model, which
removes unnecessary fields in the object header including the lockword
field that is used in traditional Java synchronization mechanisms. This
research aims to develop an effective synchronization approach for
coping with distinctive situations that the packed object data model
faces. This approach will be monitor-based but in a lockword-free
manner which differs from most traditional Java synchronization
mechanisms.

Packed Object Data Model

 (a) Packed object data model (b) Non-packed Java object data mod

 (a) Packed object data model (b) Non-packed Java object data model

Figure 1: Packed Object Data Model versus Non-packed Java Object Data Model

Motivation
•  Unlike standard Java objects, packed objects differ from each other by
the actual address of the packed data instead of the object reference.
•  PackedObjects can be used to represent data outside the Java heap
and thus can be manipulated by both Java and native code.
•  The lockword field is removed from the packed object data model and
synchronized is not supported as well.
•  Traditional Java synchronization mechanisms do not apply to the
packed object data model. It is necessary to create a new
synchronization approach to deal with distinctive situations and issues
faced by packed object data model.

Challenges
As shown in Figure 2, traditional Java synchronization mechanism could
cause multiple threads enter distinct monitors and update the same
underlying data.

Figure 2: Multiple Objects Referring to the Same Underlying Data

Locking a packed array should prevent other threads from locking on any
element of the array, vise-versa. However, the standard Java object
model is not subject to this limitation (see Figure 3).

Figure 3: Memory Layouts of a Packed Array (on the left) and a Standard Java Array

Research Goal and Approach
• This approach is monitor-based but in a lockword-free manner.
•  The packed object to be synchronized is associated with a unique
monitor by hashing its actual address.
•  The synchronization approach for packed object data model is able to
deal with the conflict between locking on the container PackedObject and
its nested PackedObjects.
•  The new approach provides interfaces for synchronization from either
the Java or the native side.

Bing Yang(UNB),

Dr. Kenneth Kent(UNB), Dr. Eric Aubanel(UNB), Karl Taylor(IBM)
University of New Brunswick, IBM Canada

Faculty of Computer Science
Bing.Yang@unb.ca, ken@unb.ca, aubanel@unb.ca, Karl_Taylor@ca.ibm.com

 0 1 2 3 4

 1

 0 3

 2

 4

A packed array:
@Length(5) PackedInt.Array packedArray;

A standard Java array:
Integer[] standardArray = new Integer[5];

packedArray.at(1)

Object header:

Data/Reference
fields:

originX originY extentX extentY R G B R G B target|offset

target|offset

target|offset
P1:

P2:

monitor

monitor

On-heap Derived
packed object:

Lock

Lock

Thread 1

Thread 2

Native storage

Java heap

Meta Data Primitive
field

Instance
field A

Instance
field B

I/O

Meta Data Primitive
field

Instance
field A

Instance
field B

Native storage

Java heap

Meta Data

Primitive
field
Instance
field A-Ref

I/O

Meta Data Primitive
field

Instance
field A

Instance
field B

Meta Data

Instance
field B-Ref

Data field A

Meta Data

Data field B

