
An Investigation of the proportion of cold objects

Definition of cold object

In the Java, objects are stored in the heap. Cold object is an object that is

rarely accessed and un-accessed time exceeds a specified time.

Motivation

Cold objects are alive but seldom accessed. When cold objects are

moved to cold regions, cold regions do not have to perform the Garbage

Collection frequently. Consequently, the pause time of the Garbage

Collection will be reduced and the Java application throughput will be

increased. In real life Java application, what is the proportion of cold

objects? An investigation of the proportion of cold objects has been done.

Methodology

Cold objects are those which remain un-accessed in the heap. Since cold

objects are un-accessed, there are not any read/write accesses to cold

objects. It is difficult to determine the inactive objects because there are

neither cues nor operations on cold objects. However, it is possible to

spot the active objects, because there are read/write accesses to the

active objects. If these active objects are picked out, the remaining must

be the inactive objects.

Solutions
1. The capture of the object activity with Access Barrier

IBM J9 provides an Access Barrier mechanism. Whenever an object is

accessed – whatever read/write operation, an Access Barrier can be

triggered. There is a good chance to capture the activity of the object at

this point.

2. The last accessed time

Whenever an object is accessed and the Access Barrier is triggered, the

current access time is recorded with timestamp. If the elapsed time

exceeds the preset cold threshold since the last accessed time, this

object is supposed to be cold.

3. The storage of the last accessed time

Objects in the heap are always movable. It is difficult to keep track of

objects’ activities when objects are moved. An efficient way is that

timestamp is embedded in the header of object. No matter where the

object moves, the timestamp is like a shadow and always accompanies

the object.

Experimental environment

 Garbage Collection policy: balanced GC

 Java heap size: -Xms2048M –Xmx4096M

 JIT (Just-in-time): turn off

 Running time: 3 hours

 Cold threshold: 20 minutes

Experimental results

Seven groups of benchmarks are run and the density of cold objects has

been obtained as the following table. SPECjbb2005 collects the size of

cold objects of 285MB and the density of cold objects reaches 20.50%.

Conclusion

The results show that the proportion of cold objects can reach more than

20% in some real life applications. That is, 20% objects do not have do

garbage collection frequently if cold objects are moved to cold regions.

The proportion of cold objects is encouraging.

Baoguo Zhou, Gerhard W. Dueck
University of New Brunswick, IBM Canada

Faculty of Computer Science

Email: barry.zhou@unb.ca, gdueck@unb.ca

