
Application performance improvements through VM

parameter modification after runtime analysis

Problem Description

The Java Virtual Machine, or JVM, is needed to execute Java

bytecode. While early implementations showed a poor

performance, current versions serve as a powerful runtime

environment not only for Java, but also for other languages

compiling to Java bytecode like Scala or Clojure. Features like

automatic Garbage Collection make programming easier for the

developer but also causes performance hits compared to

programming methods with manual memory management.

Project Goal

The VM allows us to gather a lot of information about the runtime

behavior of an application by providing heapdumps, stackdumps

and detailed logfiles. Analyzing this data can help us to categorize

applications depending on their runtime behavior. Possible

categories are for example long/short running applications or

IO/computation heavy applications. Each of them need a

specialized parameter configuration for maximum performance.

Another important factor is that performance may not only refer to

the speed but can also mean memory consumption or average

data throughput rate.

With these categorizations in mind, the goal is to devise a ruleset

which maps a certain runtime behavior to an optimal parameter

configuration which can be used to fine tune the VM.

Verification

Since there are many different types of applications, it is important

to verify the results with a wide range of benchmarks. After

running a benchmark, it is checked whether the runtime behavior

matches the pattern of one of the rules in the ruleset. If this is the

case, the benchmark is run again with the proposed parameters.

This should results in a performance increase of some kind.

Widely used benchmarks for such cases are for example the

DaCapo benchmark suite or different Java spec benchmarks.

Prof. Dr. Kenneth Kent, Prof. Dr. André Hinkenjann,

Nicolas Neu
University of New Brunswick, Bonn-Rhein-Sieg University, IBM Canada

Faculty of Computer Science

ken@unb.ca , andre.hinkenjann@h-brs.de, nicolas.neu@unb.ca,

This is why a lot of the VM behavior can be finetuned by

adjusting one or more parameters when starting the application.

You can for example adjust the garbage collection policy, the

heap size or the Just-In-Time compilation. The problem is to

decide, which to use for which type of application. Preferably this

should be possible with the Java VM treated as a black box. This

way the developer can disregard the inner workings of the VM

and concentrate on his own implementation when optimizing.

Hello

World!

Java

Compiler

