

Dynamic Monitor Allocation in the Java Virtual Machine

Outline

●Changing static monitor allocation in the JVM to a dynamic approach.
●New approach is faster than the reference JVM and consumes less
memory.

Motivation

The Java Virtual Machine (JVM) relies on space and time efficient
programming as it is the bottleneck for all Java user programs.
Therefore, research on more efficient algorithms needs to be conducted
in order to approach this goal.
Synchronization across threads in the JVM is done using locks.
According to the Java Language specification every object needs to be
able to be used for locking. As not every object is actually used for
locking this can lead to a significant memory overhead and a
performance hit.
Research has been conducted into thinning out the lock to reduce the
memory footprint. [1] introduces a technique to reduce locking to a
single compare-and-swap operation. Onodera showed in [2] a hybrid
approach of using lightweight locks and, if contention occurs, inflating
these lockwords to heavyweight monitors. These reduce the fixed
overhead per object to a single word while at the same time achieving
good performance.

[1] D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano, “Thin locks,”
ACM SIGPLAN Notices, vol. 33, pp. 258–268, May 1998.
[2] T. Onodera, “A study of locking objects with bimodal fields,” ACM
SIGPLAN Notices, 1999.

Background

Java is one of the most popular programming languages (Ranked #2 in
the TIOBE Index, November 2012). It has been designed as an object-
oriented programming language with a garbage collection component
that handles memory allocation/deallocation of objects. Java has been
designed to be operating system and machine independent. This
behaviour is achieved by encapsulating all programs in a Virtual
Machine, the JVM.
This JVM enables the programs to run in a sandboxed environment,
with which additional security can be introduced. Java features a hybrid
execution approach: code can run interpreted and compiled. The Just-
in-Time compiler (JIT) compiles bytecode into native code which then
runs machine dependant.

Problem

As of now every object in the IBM JVM receives a lockword, even if the
object is never used for locking. This behaviour introduces a memory
overhead and research needs to be conducted into reducing the memory
footprint of the object model.
Previous approaches focused on thinning out the object header, by e.g.
reducing the lockword size and locking algorithm. But nevertheless every
object still received a lockword.

Solution

●Removal of the lockword embodied in the object (it can be decided
which objects receive lockwords).

●If an object without a lockword is used for locking, a dynamic lockword is
created for this object,

●by moving the object to a location which offers enough space for the
object to also hold the lockword,

●and instantiating the lockword, so that it is ready to use by the JVM.
●The Java Object Model has been adapted to be aware of the possible
locations of the lockword.

Results

Testing with the SPECjbb2005 benchmark yielded a performance
increase of 0.47% compared to the reference implementation, as well as
a memory decrease of 5.51%. The reference JVM features an option
which removes lockwords for most objects, but then uses more
heavyweight monitors which are computationally expensive. Our
approach gave a performance increase of 0.86% compared to this JVM,
with a memory decrease of 3.75%. Our approach with the lockword
removal for most objects gave a performance increase of 0.78% and a
memory decrease of 8.79% over the reference JVM with the same
options.

Marcel Dombrowski, Kenneth B. Kent, Michael Dawson
University of New Brunswick, IBM Canada

Faculty of Computer Science
marcel.dombrowski@unb.ca, ken@unb.ca, michael_dawson@ca.ibm.com

mailto:marcel.dombrowski@unb.ca
mailto:ken@unb.ca
mailto:michael_dawson@ca.ibm.com

	Slide 1

