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email interactions that can contribute to Enron users
classifying roles of the users? Are these features
meaningful enough for accurate discovery and
prediction of roles using only small amounts of
labeled training data and a limited number of
interaction traces?. This work has tackled these
fundamental problems by an extensive study on
the Enron email dataset.

Most previous research that are conducted on
the Enron email corpus have focused on
Natural Language Processing of the data for
classification of the emails, dataset mapping of

Experiments and Resulfs

: ! For evaluating the selected feature set, EM algorithm as a cluster
Social Network Analysis on Enron Dataset analysis method is applicd which finds the best possible rumber of
clusters through an iterative process.

To overcome the problem of small sample size and considering the
issue of skewed role categories we have decided to merge the
categories based on their closeness in any organizational setting.

A comprehensive analysis has been done to select the most informative social
network features. Social communities are discovered and role
communications are studied in this context. Moreover to evaluate if these
communities are meaningful and distinguishable in the Enron organizational

Enron's users, and quantitative analysis inside setting, a topic discovery 1s made to evaluate these communities. Managing Employee Top-level
the Enron dataset. /Class\ i /Class\
] "‘“ Manager Trader Director CEO VP President
Vice .é’:’,, Efi.eo
vt
. . E"“" e The Neural Network classifier has been trained and the overall
The only publicly available dataset which has u‘e, "",. \ accuracy among all the classification is 63.57%.

been used in email research 1s the Enron corpus.
To our knowledge there exists only one listl
that indicates the roles of Enron users: 103 out
of 149 wusers' email addresses and the
organizational roles are specified. For the
preprocessing, the names and email addresses
were examined and found that 60 of selected
users had second email addresses. We extracted
all of messages related to these addresses and
unified the whole dataset.

TP FP Precision Recall F-Measure ROC
Managing Class  0.745 0.221  0.618 0.732 0.675 0.864
Employee Class  0.584 0.124 0.67 0.574 0.608 0.791
Top-level Class 0.568 0.095 0.642 0.55 0.596 0.895
Weighted Avg. 0.636 0.159 0.645 0.629 0.635 0.853

Correctly Classified 63.57%
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This shows that social network measures along with some
Interaction-based features can make a strong contribution to
classifying roles.

Future Directions

mCEO

M Director

= Employee The Email social network considered as a graph where vertices represent the
s Enron users and their related roles and edges shows the existence of sent(or
© Managing Director received) messages between two users. Applying the Newman clustering
president algorithm the whole network divided into five difterent communities.
Trader To evaluate the quality of the communities, emails in each community have
Vice president been analyzed in isolation in order to find the most frequently discussed
terms in that community.

4 For future work it will be interesting to analyze these communities
in time spaces: one can study users and their corresponding feature
values 1n time slices.

B Manager

d To overcome the problem of “small sample size” one can try semi-
supervised classifiers like co-training.
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