
A Framework for Parallel SAT Solving Using Batch Schedulers
David Bremner, Eric Aubanel, Sajjad Asghar

Faculty of Computer Science, University of New Brunswick Fredericton, NB, Canada

Introduction Methodology

Architecture of Framework

Results and Statistics
Solvers for the Boolean satisfiability problem (SAT) are
enabling technology for diverse set of applications.
Real Life Applications of SAT solvers are

•Electronic Design Automation (EDA) and
verification
•Field Programmable Gate Array(FPGA)
routing
•Automatic Theorem proving
•Bounded model checking
•AI planning
•Formal verification of hardware and
software design
•Cryptography and crypto Analysis

Generally a SAT problem is represented as conjunctive
Normal Form(CNF) .Following is an example of CNF for a
SAT instance that have five variables and five clauses.

 (x1) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x2∨ ¬x3 ¬x5) ∧(¬x4 ∨ x5)

Davis, Putnam, Logemann and Loveland(DPLL)
Algorithm is most popular algorithm for SAT solving.

• DPLL is based on backtracking technique
• Most state of the art SAT solvers are

based on DPLL algorithm
• In addition to DPLL modern SAT solvers

have introduced the concepts of
• Clause learning
• Non-chronological backtracking(back

jumping)
• Two watched literals per clause
• Variable State Independent, Decaying

Sum (VSIDS) for variable selection
heuristics

• Restarts
• Some popular SAT Solvers are

• miniSAT
• Tsat
• Crypto minSAT

Parallel SAT Solving
Parallel SAT solving is challenging task due to the
irregular structure of Search space a of SAT problem.
• There are very few dedicated parallel SAT solvers.
• Most of the parallel SAT solvers are based on divide-

and-conquer paradigm.
• In parallel SAT solving, it is difficult to handle

workload management and work scheduling of Jobs.

Objectives
The main objectives of our research work are to
• Design a framework that utilizes parallel tree search

techniques for the solving of SAT problems
• Design framework that is

• Easy to use and easy to integrate with
currently available parallel computing
infrastructures and software.

• Can run with available state of the art SAT
solvers without making a lot of changes to
the original code of these SAT solvers.

• Should be compatible with different
cluster resource managers and batch
schedulers

Representing a SAT instance as Tree:
A SAT instance can be represented as a binary tree. For
example given a SAT instance with five variables

(¬x2 ∨ x5)∧ (x1∨ ¬x3∨ x4) ∧ (x4 ∨ ¬x5) ∧ (x2 ∨ x1)
this SAT formula can be represented as tree with all the
32 assignments that are possible for this formula

Source http://www.mqasem.net/sat/sat/index.php

Splitting of Search tree:

To solve a SAT instance with the help of parallel
computing infrastructure, the search tree of a SAT
instance is split into different branches, and then each
branch is submitted to a workstation to search for the
solution in different parts of the tree. A tree for SAT
solving is split by using the idea of guiding Path.
Guiding Paths:

To find the solution of SAT instance in parallel we have to
split the search tree into different paths, each path
represents a different part of the search tree. Guiding
paths give us good estimation for search tree splitting.
Guiding paths are calculated after running a SAT solver for
a given duration serially, for example If 8, 14, 31 is a
sequence of assignments in a given formula, then the
corresponding guiding paths are {-8, 14, 31}, {-8, -14, 31},
{-8,14, -31},{-8, -14, -31}.

Each sequence of above mentioned guiding paths lead us
to a different branch of a search tree this illustrated in the
following diagram.

For our framework we have identified and experimented
with two different types of guiding paths based tree
splitting techniques and these techniques are
1. Static Tree Splitting:

• At first a SAT solver is run on the master
node to discover the guiding paths.

• Initial formula of SAT instance is modified
according to the newly discovered guiding
paths.

• Depending on the number of Paths the
jobs are submitted to the workstations on
the cluster.

• Jobs are run independently of each other

• Once the solution is found by on job, all
the other running jobs are notified to stop
searching, and results are returned to the
master node.

Static splitting has been very effective for our
experiments, but it suffers with following limitations

• Once jobs are submitted the number of processes,
that we can use for solving of a SAT instance become
fixed and even though if we have free resources
available on the cluster, we can not use them.

• Static splitting also suffers from the work repetition
and cycles over the search

Dynamic Tree Splitting
Dynamic splitting of the search tree is done on the bases
of available CPU resources and before submitting the
new jobs, the framework also collects the up-to-date
information from already running jobs. Dynamic splitting
helps to achieve efficient use of resources and it also
reduces the work repetition. The work related to
dynamic splitting is still under progress.

The main components that are part of the architecture
of our developed framework are
1. DRMS
Distributed Resource Management System(DRMS) are
consist of batch schedulers that enables the users of a
cluster to submit, control and monitor jobs on remote
workstations. Few of widely used DRMS are

• Oracle Grid Engine(OGE)
• Condor
• Open PBS/PBS pro
• LSF
• SLURM
• Torque

We are using ACEnet infrastructure at UNB, ACEnet
cluster is running with OGE as DRMS.
2. DRMAA
Batch schedulers based clusters provides commodity
computing with low cost per CPU cycle. We are using
ACEnet infrastructure and oracle Grid Engine(OGE) for
running and testing of our SAT solver framework. Job
control and management in our developed framework is
done through Distributed Resource Management
Application API (DRMAA).
DRMAA is an Open Grid Forum specification that
standardizes job submission, job monitoring, and job
control in Distributed Resource Management Systems
(DRMS) in a standard way.
3. Framework for Parallel SAT solving
DRMAA controls running of jobs on a cluster, while job
creation , Job submission and job monitoring on the
cluster is done by the core of our framework. The
framework is also responsible for the splitting of the
search tree and generation of necessary knowledge base
that helps to solve a SAT instance quickly .The
framework is flexible enough to work with any available
SAT solver and many batch schedulers. Following is the
diagram of layered architecture of our framework

The layered architecture of the Framework

Operating System

DRMS(Oracle Grid Engine, PBS, torque, codor etc.)

DRMAA

Framework for Parallel SAT solving

miniSAT tsat Crypto miniSat Any other Solver

With dynamic and static splitting we have got
interesting results, following table and chart
indicate the results we got from the Static Splitting
of a search tree on four different SAT instances
.With Dynamic splitting we got good preliminary
results as well and we were able to solve the SAT
instance using less resources. miniSat is used as
base solver for our experiments, but we can use
any SAT solver with our framework.

 CPU used

 1 4 16 64 256

CNF 1 75.4 55.6 16.5 18.2 11.3

CNF 2 74.3 54.3 85.9 20.6 8.7

CNF 3 630 64 20.9 24.18 13.9

CNF 4 617 66.4 205 5.3 1.64

Average time 349.175 60.075 82.075 17.07 8.885

0

100

200

300

400

500

600

700

0 2 4 6 8

CNF 1

CNF 2

CNF 3

CNF 4

Average time

Tim
e in seconds

Path length

Conclusion and Future Work
In this poster we have presented our SAT solving
framework. The framework is batch scheduler
independent and it can run with any batch scheduler
and with any off-the-shelf SAT solver without modifying
the original code of the SAT solver. The presented
framework make efficient use of cluster resources and
can solve the SAT instances very efficiently.
We have got good results with static splitting, but we
also have identified few shortcomings with static
splitting of search tree, Although Our initial results with
static splitting are encouraging but in future we will be
focusing on the dynamic splitting of search tree to
mitigate the limitations of static splitting.

Acknowledgements
We thank the following organizations for providing the
finical support to carry out our research work
• NBIF(New Brunswick Innovation Fund)
• NSERC (Natural Sciences and Engineering Research

Council of Canada)
• University of New Brunswick
We would also like to acknowledge the support from
ACEnet for providing the computing resources and
infrastructure.

http://www.mqasem.net/sat/sat/index.php

	Slide Number 1

