Position Estimation of Nodes Moving in a Wireless Sensor Network University of New Brunswick Faculty of Computer Science Bradford G. Nickerson Lingchen Zhou I.zhou@unb.ca bgn@unb.ca

Motivation

Investigate a method with high accuracy but lower cost for positioning object in indoor environments.

Received Signal Strength Indicator (RSSI), in dBm • Less communication overhead – 8 bits • Simpler

Distance Estimation Method

Free Space Propagation Model

 $P_{r} = \frac{\lambda^{2}}{4\pi} G_{r} \frac{1}{4\pi d^{n}} G_{t} P_{t} \quad P_{r} = \text{received power (W),}$ $\lambda = \text{carrier wave length,}$ G_r = gain of the receiver antenna, where d is defined as G_{+} = gain of transmitter antenna, P_{t} = transmitter power (W), $d = \sqrt[n]{\frac{\lambda^2 G_r G_t P_t}{16\pi^2 P_r}}$ d = distance between transmitter and receiver (m), n = propagation exponent. Log-Normal Shadowing Model (LNSM) $PL(d) = \overline{PL(d_0)} + 10n \log_{10} \frac{d}{d_0} + X_{\sigma}(or + \sigma(d)X)$ where *d* is defined as \longrightarrow LNSM-DV $PL(d) - PL(d_0) - X_{\sigma}$ d = 1010*n* PL = path loss (dB), d_0 = near-earth reference distance (m), n = a path loss exponent depending on the surroundings,

- Output by most single-chip transceivers
- Lower cost
- Tradeoff with lower distance accuracy

Indoor Position Estimation

Method	Range of Use	Accuracy
Signal Strength Difference of Arrival	20m (simulated)	below 2.4m for the lower noise below 4.2m for the high noise
Angle of Arrival	30m x 30m square (simulated)	better than 2m
Received Signal Strength Indicator	30m	distance error of 10% of range
Time of Flight	30m	at worst 9m, 3m average
Time Difference of Arrival (e.g.: Cricket)	indoor area	1cm to 3cm
Ultra-Wideband	400m ² for 4	tens of centimeters

 X_{σ} = zero-mean Gaussian random variable (dB).

Least Squares Method

Proposed Sequence Diagram

