Position Estimation of Nodes Moving in a Wireless Sensor Network
 University of New Brunswick Faculty of Computer Science Lingchen Zhou
 I.zhou@unb.ca
 Bradford G. Nickerson
 bgn@unb.ca

Motivation

Investigate a method with high accuracy but lower cost for positioning object in indoor environments.
Received Signal Strength Indicator (RSSI), in dBm

- Less communication overhead - 8 bits
- Simpler
- Output by most single-chip transceivers
- Lower cost
- Tradeoff with lower distance accuracy

Indoor Position Estimation

Method	Range of Use	Accuracy
Signal Strength Difference of Arrival	20 m (simulated)	below 2.4 m for the lower noise below 4.2 m for the high noise
Angle of Arrival	$30 \mathrm{~m} \times 30 \mathrm{~m}$ square (simulated)	better than 2 m
Received Signal Strength Indicator	30 m	distance error of 10% of range
Time of Flight	30 m	at worst 9m, 3 m average
Time Difference of Arrival (e.g.: Cricket)	indoor area	1 cm to 3cm
Ultra-Wideband (e.g.: Ubisense)	400m² for 4 stationary nodes	tens of centimeters
Mobile Phone Location (e.g.: My Location Indoor)	indoor area	several meters

Distance Estimate Using RSSI

Distance Estimation Method

- Free Space Propagation Model
$P_{r}=\frac{\lambda^{2}}{4 \pi} G_{r} \frac{1}{4 \pi d^{n}} G_{t} P_{t} \quad \mathrm{P}_{\mathrm{r}}=$ received power (W),
$\lambda=$ carrier wave length,
where d is defined as $\quad G_{r}=$ gain of the receiver antenna $\mathrm{G}_{\mathrm{t}}=$ gain of transmitter antenna, $P_{t}=$ transmitter power (W),

$$
d=\sqrt[n]{\frac{\lambda^{2} G_{r} G_{t} P_{t}}{16 \pi^{2} P_{r}}}
$$

d = distance between
transmitter and receiver (m),
$\mathrm{n}=$ propagation exponent.

- Log-Normal Shadowing Model (LNSM)

$P L(d)=\overline{P L\left(d_{0}\right)}+10 n \log _{10} \frac{d}{d_{0}}+X_{\sigma}($ or $+\sigma(d) X)$
where d is defined as
\longrightarrow LNSM-DV

$$
d=10^{\frac{P L(d)-\overline{P L\left(d_{0}\right)}-X_{\sigma}}{10 n}} d_{0}
$$

$\mathrm{PL}=$ path loss (dB),
$d_{0}=$ near-earth reference distance (m),
$\mathrm{n}=$ a path loss exponent depending on the surroundings,
$X_{\sigma}=$ zero-mean Gaussian random variable (dB).

Faculty of
COMPUTER INNOVATION UNB SCIENCE
$F(\mathbf{x}, \mathbf{I})=\sqrt{\left(x_{a}-x_{i}\right)^{2}+\left(y_{a}-y_{i}\right)^{2}+\left(z_{a}-z_{i}\right)^{2}}-d_{i}=0 \quad i=1,2, \mathrm{~L}, k$
$A_{4,3}=\left(\begin{array}{ccc}\frac{\hat{x}_{a}-x_{1}}{d_{1}} & \frac{\hat{y}_{a}-y_{1}}{d_{1}} & \frac{\hat{z}_{a}-z_{1}}{d_{1}} \\ M & M & M \\ \frac{x_{a}-x_{4}}{d_{4}} & \frac{\hat{y}_{a}-y_{4}}{d_{4}} & \frac{\hat{z}_{a}-z_{4}}{d_{4}}\end{array}\right)$
$\hat{d}_{i}=\sqrt{\left(\hat{x}_{a}-x_{i}\right)^{2}+\left(\hat{y}_{a}-y_{i}\right)^{2}+\left(\hat{z}_{a}-z_{i}\right)^{2}}$
$\Delta \mathbf{x}=\left(\mathbf{A}^{\mathrm{T}} \mathbf{P A}\right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{P w}$
$\mathbf{w}_{k, 1}=\hat{\mathbf{d}}-\mathbf{I}=\left(\begin{array}{c}\hat{d}_{1} \\ \hat{d}_{2} \\ \mathrm{M} \\ \hat{d}_{k}\end{array}\right)-\left(\begin{array}{l}\hat{d}_{1} \\ d_{2} \\ \mathrm{M} \\ d_{k}\end{array}\right)$
repeat until $|\Delta x| \leq \varepsilon$
$\mathbf{C}_{\hat{\mathbf{x}}}=\hat{\sigma}_{0}^{2}\left(\mathbf{A}^{\mathbf{T}} \mathbf{P A}\right)^{-1}$
$\hat{\sigma}_{0}^{2}=\frac{\hat{\mathbf{r}}^{\mathrm{T}} \mathbf{P} \hat{\mathbf{r}}}{d f}$

