RuleML for Object-Relational Knowledge Representation on the Web

Harold Boley
Institute for Information Technology, National Research Council; Faculty of Computer Science, University of New Brunswick, Canada

Developing F-logic and W3C RIF, PSOA RuleML permits relation applications with optional object identifiers and, orthogonally, positional or slotted arguments.

Introduction: Two IT Paradigms

Knowledge representation \& problem solving in - AI

- the (Semantic) Web
- IT at large
can be
- Logic-based: FOL, Horn, LP
- Object-oriented (and frame-based): CLOS, RDF, N3

Introduction: Psoa Terms and Rules

- Integration based on positional-slotted, object-applicative (psoa) terms and rules
- Psoa term applies function or predicate symbol, possibly instantiated by object, to zero or more positional or slotted (named) arguments
- For a psoa term as atomic formula, predicate symbol is class (type) of object as well as relation between arguments, which describe object
- Each argument of a psoa term can be psoa term applying function symbol

Introduction: Psoa Rules Exemplified

Example (Rule-defined anonymous family frame)

Group is used to collect a rule and two facts. Forall quantifier declares orginal universal argument variables and generated universal OID variables ?2, ?3, ?4. Infix :- separates conclusion from premises of rule, which derives anonymous/existential family frame from married relation And from kid relation of husb Or wife (the left-hand side is objectified on the right).

\qquad $\xrightarrow{\text { Or (kidd ? }}$

Semantically, example is modeled by predicate extensions corresponding to following set of ground facts (the subdomain of individuals $\boldsymbol{D}_{\text {ind }}$ is to be defined):
\{o\#family(husb->Joe wife->Sue child->Pete)\}
\{1\#married(Joe Sue), _2\#kid(Sue Pete)\},
where $o \in \boldsymbol{D}_{\text {ind }}$.

Conclusion: Psoa Rules Made Horn

Example (Rule-extended named family frame)
Horn version of introductory example retrieves family frame with named OID variable in premise and uses its binding to extend that frame in conclusion (left: given; right: objectified).

Group (

Forall ? Hu ?Wi ?Ch ?o

wife->?Wi
child \rightarrow ?
And (?o\#family (husb->? Hu
Or(kid(?Hu ?Ch) ?Wi)
r(kid(?Hu ?Ch)
ly (husb->Joe
inst4\#family (husb->Joe
kid(Sue Pete) _1\#kid(Sue Pete)
\rightsquigarrow Simpler semantics corresponding to this set of ground facts: \{inst4\#family(husb->Joe wife->Sue child->Pete),_1\#kid(Sue Pete)\}

