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Motivation

Methods
Find a “good” feature
representation that reduces
difference between a source and
a target domain or minimizes
error of models
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Instance-transfer

How to extract knowledge learnt from
related domains to help learning in a
target domain with a few labeled data?
How to extract knowledge learnt from
related domains to speed up learning in
a target domain?

 In some domains, labeled data are
in short supply.
 In some domains, the calibration
effort is very expensive.
 In some domains, the learning
process is time consuming.

Feature-representation-transfer

To re-weight some labeled data in a source 
domain for use in the target domain

Model-transfer
Discover shared parameters or priors of models between a source domain and a 

target domain 

Relational-knowledge-transfer

Build mapping of relational 
knowledge between a source 
domain and a target domain.
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real-world
Application
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1. Inductive
Transfer Learning
2. Transductive
Transfer Learning
3. Unsupervised
Transfer Learning 
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Most approaches to transfer learning assume transferring
knowledge across domains be always positive.
However, in some cases, when two tasks are too dissimilar,
brute-force transfer may even hurt the performance of the target
task, which is called negative transfer
Some researchers have studied how to measure relatedness
among tasks
How to design a mechanism to avoid negative transfer needs to
be studied theoretically

Measure the similarity 
between domains and 

tasks and their 
transferability
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Get the target predictive 
function
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Accuracy Improvement

Results
TL algorithms compared
with traditional algorithms
on prediction accuracy

Flow Chart
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