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Build a classifier C; on the labeled data L,

Semi-Supervised Learning (SSL) Method

J In many real-world applications: - ,
ompute the accuracy of C; on L,
= Labeled data (L): scarce; expensive/difficult to collect. Proposed solution (“ISBOLD”) : l

= Unlabeled data (U): abundant; relatively easy to obtain. an instance selection method %Y“‘H etuh fhe Classiter

No

. SSL uses labeled data and unlabeled data to learn hypotheses. based on the original labeled Select m unlabeled instances from U and assign

: : d labels using Ct
4 Usage Supervised Semi-supervised unsupewised\ ata
learning |eaming learning J
{(x,y)} labeled data Yes Yes No
Can the m instances help

Qx} unlabeled data No Yes Yes

J

Improve Accuracy on Ly?

Motivation

. Selecting the most confident unlabeled instances (“CF”) is a Add the m instances to expand Loy NG
common instance selection method in two standard SSL methods:
self-training and co-training.
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Rebuild classifier Ciq on Lisq

Self-training Co-Training

o - o P \
R Y = [ . .* > R » Steps: In each iteration, after the selection of the most confident
L mER L unlabeled instances,
" . K T w2 f e a. Compute the accuracy of the current classifier on the original labeled;
- Shortcomings of “CF”: b. Check whether the accuracy is lower than that in last iteration;
= Label noise may be added to the training set. c. If so, discard the selected instances; Otherwise, add them to the training
s Itis not necessarily superior to that of randomly selecting unlabeled set in the next iteration.

instances. % Reasons:
- Our pervious work showed that the original labeled instances are * Performance on the original labeled data reflects the performance on

more reliable than the self-labeled instances that are labeled by the future testing set.
the classifier. * |t prevents adding unlabeled instances that will possibly degrade the

Results on 26 benchmark UCI dataset performance.

Table 1: Accuracy of CF vs ISBOLD in self-training and co-training > Eva | u a t I O n :

(a) self-training (b) co-training

Self-training Co-training , - e . .
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Accuracy balance-scale  |539.52|66.21 balance-scale |59.10|67.17 ’
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Paired t-test 6/20/0 7/19/0 credit-g 60.62(66.03 v credit-g 63.04(67.72 v . g y )
diabetes T0.55|70.53 diabetes 67.51|69.58
heart- R1.55(81.15 heart- 82.77(80.13 1
S b e e Implemented in Weka
. o e o heart-statlog  [B1.37|80.74 heart-statlog  [32.03|20.30
Self-tramlng Co-training hepatitis 70.70(78.34 hepatitis 81.04/80.21
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splice B2.05(85.48 v splice T3.91|82.63 v . . o fro . .
e Text mining (e.g., web page classification), Natural language processing
Table 2: AUC of CF vs ISBOLD in self-training and co-training “'m] TT%Q gTdd ot 1 ?bii ?332 ! !
(a) self-training (b) co-training ‘__L'_“_:Gf =000 _Eé; ,,h;t_‘ mmf =000 ,,T'm l:-'.EJl ) ( 1 f 1 1 )
[Dataset___[CF [ISBOLD] [Dataset___[CF_[ISBOLD o [ Gan [oS(ET €.g., Information extraction
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