Orthogonal Range Search using a Distributed Computing Model

Pouya Bisadi and Bradford G. Nickerson Faculty of Computer science, University of New Brunswick, Fredericton, New Brunswick, Canada

Motivation

IJNR

- Reliability
- Low Congestion per host
 O(log n / n) for n= # of random queries

Data Structure on n nodes

- Improved data access in a P2P network
- Geographical distribution of data
- Multiple party access control
- Automated data replication for back

Orthogonal Range Search

Basis of database engines

Skip List^[1]

- Random data structure
- Searches can start from any element
- Query messages (W.H.P): O(log n + (k/B))
 k = # of point in range and
 - B = # of points in one message

Space: O(n)

Multiple list membership of each node

Non-redundant Rainbow Skip Graph

A skip graph on θ(n/log n) Supernodes
A Supernode consists of θ(log n) nodes
Constant number of pointers
(vs. Log(n) for skip graph

Skip Graph^[1]

Distributed extension of skip lists.
 Set of increasingly sparse lists

In all 3 data structures, **Total order** binary relation (\leq) should be definable on the set of keys

Data Distribution Image: Constraint of the second seco

Planned Experimental Validation

- 10⁹ uniform random generated points $\in [0,1]^2$
- 100 nodes physically located on ACEnet
- 3000 size-limited axis-aligned random queries
- Queries will be asked from different nodes

[1] Michael T. Goodrich, Michael J. Nelson, and Jonathan Z. Sun, The rainbow skip graph: a fault-tolerant constant-degree distributed data structure, SODA '06: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm (New York, NY, USA),

ACM, 2006, pp. 384{393.

