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Motivation

Get an understanding of different Garbage Collector (GC)
types and their parameters to improve the throughput of
the application with the help of an own Garbage Collection
Simulator.

Methology

• Create an Application:
• Allocates objects - allocate(x)
• Set delete flag on objects – free(m)
• Clean with own Garbage Collection

Simulator - gcs()
• Test and compare with different GCs of Java VM

Conlusion

• Choose GC regarding field of operation
• Increasing maximum heap size will not solve

problem but defer it
• No well chosen parameters for own imple-

mentation (too high GC frequency + overhead)
• Testing new implementations with different GC

parameters can increase throughput
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Application

• YG: Serial 
• OG: Mark&Sweep-algorithm
• Stop-The-World-Phase (STW)

o Several YG-Collections before Full Collection appears
o High Frequency many pauses  high overhead
o ~0.8s pauses

• Like Serial M&S Collector
• BUT: YG on Parallel Hardware
•  faster in YG

o Less pauses  less overhead
o ~0.6 s pauses

• One total heap
• Only theoretical
• Freed objects with 

DeleteFlag

o Too high frequency
o No realistic values in amplitude
o Strong overhead if more than 80% of heap

• Changes of M&S-Alg. in 
OG

• Short STW phases
• 2 phases are concurrent

o Concurrent marking (only STW to detect roots and remark)
o Low pauses (~0.1 s)

• Complete heap divided in 
sub regions of same size

• Card Table  Remembered 
set ( trash density)

• Regions with most garbage will be cleaned first
• Regions can be cleaned in parallel ( fast)

o In general overhead of 30%
o Complete heap in use (cause of regions)
o Complete cleaning causes 60% overhead

Generational Heap


