
Issues of Java Garbage Collection

Markus C. Goffart Gerhard W. Dueck
markus.goffart@unb.ca dueck@unb.ca

University of New Brunswick - Faculty of Computer Science

Motivation

Get an understanding of different Garbage Collector (GC)
types and their parameters to improve the throughput of
the application with the help of an own Garbage Collection
Simulator.

Methology

• Create an Application:
• Allocates objects - allocate(x)
• Set delete flag on objects – free(m)
• Clean with own Garbage Collection

Simulator - gcs()
• Test and compare with different GCs of Java VM

Conlusion

• Choose GC regarding field of operation
• Increasing maximum heap size will not solve

problem but defer it
• No well chosen parameters for own imple-

mentation (too high GC frequency + overhead)
• Testing new implementations with different GC

parameters can increase throughput

free(m)

allocate(x)

gcs()

Application

• YG: Serial 
• OG: Mark&Sweep-algorithm
• Stop-The-World-Phase (STW)

o Several YG-Collections before Full Collection appears
o High Frequency many pauses  high overhead
o ~0.8s pauses

• Like Serial M&S Collector
• BUT: YG on Parallel Hardware
•  faster in YG

o Less pauses  less overhead
o ~0.6 s pauses

• One total heap
• Only theoretical
• Freed objects with 

DeleteFlag

o Too high frequency
o No realistic values in amplitude
o Strong overhead if more than 80% of heap

• Changes of M&S-Alg. in 
OG

• Short STW phases
• 2 phases are concurrent

o Concurrent marking (only STW to detect roots and remark)
o Low pauses (~0.1 s)

• Complete heap divided in 
sub regions of same size

• Card Table  Remembered 
set ( trash density)

• Regions with most garbage will be cleaned first
• Regions can be cleaned in parallel ( fast)

o In general overhead of 30%
o Complete heap in use (cause of regions)
o Complete cleaning causes 60% overhead

Generational Heap


