

# **Dynamic Admission Control For A Bandwidth Broker** Chenguang Gao, John DeDourek, Przemyslaw Pochec Faculty of Computer Science, University of New Brunswick Fredericton, NB, Canada



#### INTRODUCTION

• Multimedia and real-time applications require high quality services.

• Quality of Service (QoS) provides better service such as reduction of the number of dropped packets, delay, jitter, and out-of-order delivery.

## Methodology

• Flow Generator - randomly generate EF flows and store them into a file

• NS2 DiffServ Script – provide the DiffServ, monitor packet dropping, read incoming flow file and bandwidth file

• Smart Admission Control - read flow files, inspect network load, predict and generate future threshold for EF traffic

**Admission Control Algorithms** •Static Admission Control: AT(0) = AT(1) = AT(2) = .... = AT(N) = Initial AT

•Dynamic Admission Control:  $AT(N) = AT(N - 1)_{(optimal)}$  $\eta = \alpha \times UsedCapacity - \beta \times UnusedCapacity$  $-\gamma \times \text{RejectFlows}$  ( $\alpha = \beta = \gamma = 1$ )

|              | Flow    | Data Source |      |        |             |
|--------------|---------|-------------|------|--------|-------------|
|              | Rate    | start       | stop | source | destination |
| flow 0       | 1000000 | 10          | 40   | 0      | 0           |
| flow 1       | 2000000 | 15          | 35   | 1      | 1           |
| flow 2       | 2000000 | 20          | 30   | 2      | 2           |
| flow 3       | 2000000 | 25          | 35   | 3      | 3           |
| <b>5</b> 1 - |         |             |      |        |             |

• The IETF proposed the Differentiated Services (DiffServ), which classifies flows with DiffServ code point (DSCP) and the Per-Hop behavior (PHB).

• A Bandwidth Broker (BB) manages the resources based on the Service Level Agreement (SLA) by controlling the network load and by accepting or rejecting bandwidth requests.

#### OBJECTIVE

•Design a scheme to provide dynamic bandwidth management in a DiffServ domain with a bandwidth broker.

•Simulate the proposed scheme in NS-2 and analyze results with respect to performance of the admitted streams, and with respect to the cost of unused reserved resources





## **Experiments and Results**

flowLostEF.tr flowLostEE.tr



**Overall Flowchart** 



#### Flow Generating Algorithm

algorithm --> generating EF flows for each pair of EF\_node(\$c) initialize totol running time (sum(\$c)) initialize start\_time for each flow (start(\$c,0)) initialize stop\_time for each flow (stop(\$c,0))

set up RNG and its seed (it could be 0 or a constant

- set up and generate cbr\_rate(\$c,0) with Uniform distribution
- set up and generate idle(\$c,0) with Uniform distribution
- set up start(\$c,0) with idle(\$c,0)
- set up and generate video\_length (\$c,0) with Uniform distribution

add up \$idle(\$c,0)+ video\_length(\$c,0) to sum(\$c) define stop(\$c,0) with \$sum(\$c)

#### initialize counter d to 1

while  $\{$ sum(sc) < 660seconds $\}$ 

generate rate(\$c,\$d) with Uniform distribution generate idle(\$c,\$d) with Uniform distribution set up start (c, d) with [sidle(c, d) + stop(c, d-1)

generate video\_length(\$c,\$d) with Uniform distribution add up to  $sum(sc)+ sidle(sc,sd)+ svideo_length(sc,sd)$  to sum(sc)set up stop(\$c,\$d) with the new \$sum(\$c)

increase counter d



5.00 + 0

#### Conclusion

•The simulation shows improved QoS for the EF traffic with dynamic admission control (very few EF packets dropped). •Performance measured with the metric η is higher for the dynamic algorithm than for the static algorithm. •The proposed scheme successfully provides dynamic bandwidth management with a bandwidth broker.