
Proceedings of the Sixth Annual

Research Exposition

2009

Proceedings of the Sixth

Research Exposition

(Research Expo ’09)

Fredericton, New Brunswick, Canada

April 8, 2009

UNB Information Technology Centre

Publisher: UNB Information Technology Centre

ISBN 978-1-55131-134-0

Contents

Contributed research papers 1
An Embedded Decryption/Decompression Engine using Handel-C 1
Quantifying Process Model Conformance Through Minimal-Cost Approximations 12
A Methodology for Rapid Optimization of HandelC Specifications 21
A Handel-C Implementation of a Computationally Intensive Problem in GF(3) 32
Ontology-based Unit Test-case Generation . 42
Knowledge Base Validation under Closed-World Semantics 49
Fusing Multiple Sensors to Detect Network Traffic Anomalies - A Control Theoretic Model 57
An Incremental Self-Improvement Hybrid Intrusion Detection System 65
Expressing Vague Knowledge in the Fuzzy Description Logic 72

Contributed research posters 82
Generating partial COP-nets on demand . 82
A Framework for Mobile Applications . 83
Update Propagation in Modular Ontologies . 84
RNA Motif Discovery using Probabilistic Tree Adjoining Grammars 85
I/O Efficient Search of Moving Objects on a Graph . 86
Effective Query Selection during Preference Elicitation . 87
Self-Healing Power Grid by Autonomous Agent Framework 88
Performance Enhancement of Smith-Waterman Sequence Database Searches Using Hybrid

Model: Comparing the MPI and Hybrid Programming Paradigm on SMP Clusters . 89
UNB Honeynet Environment . 90
Botnet Analysis Framework . 91
Network Security Simulation Visualization . 92

Abstracts of 2008 research publications 93
Fixed-Parameter Tractability of Anonymizing Data by Suppressing Entries 93
Using Behavioral Specification for Digital System Design 93
A Resource Discovery Framework for Semantic Grids Based on the Interface-Based Mod-

ular Ontology Formalism . 94
An Architecture and Formalism for Handling Modular Ontologies 94
Aspects of Inconsistency Resolution in Modular Ontologies 94
Formalizing Ontology Modularization through the Notion of Interfaces 95

Formalizing the Role of Goals in the Development of Domain-Specific Ontological Frame-
works . 95

An Interface-Based Ontology Modularization Framework for Knowledge Encapsulation . . 95
Agility DK Tutorial with the Amirix AP1100 . 96
An Embedded Decryption/Decompression Engine using Handel-C 96
Agility DK Tutorial with the Amirix AP1100 . 96
Embedded Systems: New Challenges and Future Directions 96
Application Specific Instruction Sets and their Impact on the Design Space 97
Determining the Optimal FPGA Design for Computing Highly Parallel Problems 97
Automatic Identification of Parallelism in Handel-C . 97
An Embedded Implementation of the Common Language Infrastructure 98
Automated Extraction of Concurrency and Pipelined Data Paths in Handel-C 98
A Handel-C Implementation of a Computationally Intensive Problem in GF(3) 98
Service Composition for GIS . 99
Flexible Software-Hardware Network Intrusion Detection System 99
Predicting User Preferences via Similarity-Based Clustering 100
Identifying Sources of Intractability in Cognitive Models: An Illustration using Analogical

Structure Mapping . 100
A Novel Covariance Matrix Based Approach for Detecting Network Anomalies 100
Detecting Network Anomalies Using Different Wavelet Basis Functions 101
Criterion for Intensification and Diversification in Local Search for SAT 101
Switching Among Non-Weighting, Clause Weighting, and Variable Weighting in Local

Search for SAT . 102
Uncertainty Treatment in the Rule Interchange Format: From Encoding to Extension . . 102
Combining Fuzzy Description Logics and Fuzzy Logic Programs 103

Abstracts of 2008 PhD Theses 104
The Collaborative Development of Para-consistent Conceptual Models Influenced by Un-

certainty: A Belief-theoretic Approach . 104
A Framework for User Guidance in Web Search Engine Interfaces Based on Past Users

Behavior . 105
Multidimensional Programs on Distributed Parallel Computers: Analysis and Implemen-

tation . 105
A Fuzzy Feature Evaluation Framework for Network Intrusion Detection 106

Abstracts of 2008 MCS Theses 108
Generating Secure Elliptic Curves Over Binary Fields . 108
A Combined Approach for Search of Learning Objects on the Web 108
Improving an OpenMP-based Circuit Design Tool . 109
Computational Grid Emulation for Performance Analysis of Mesh Partitioners 109
Incorporating Guideline Support Within an Online-Questionnaire Design Tool 109
eTourPlan: A Knowledge-Based Tourist Route and Activity Planner 110
Improving Responsiveness of Sensor Webs . 110
An SSE-Component based Model for RNA Structure . 111

Investigating Resource Estimation for A High-Level Language 111
Improved Competitive Learning Neural Networks for Network Intrusion and Fraud Detection111
Service Oriented Architecture Implementation of OpenGIS Web Processing Service 112
Web Based Development Environment for GIS Map Services 113
Quality of Service (Qos) for video tranamission . 113
On the role of temporal and spatial representations in light of ETS formalism 114
Adjustable Autonomy in an Automated Negotiation Agent 114
Managing Software Quality in Educational and Small Business Environments 115
An Opportunistic Communication Paradigm for Cyber-Engineering 115
Security and Asynchronous Javascript and XML (AJAX): Assessing the Vulnerability of

a Simple AJAX Deployment to a JAVASCRIPT Hijacking Attack 116
Multi-level Online Learning . 116
A Novel Protocol Suite for the Virtual Home Environment in Heterogeneous Networks . . 117
Dynamic Clustering of Large Scale Data Using Random Sampling 117
Assisting Interoperability between Learning Objects and Learners in an E-Advising Scenario118

Author Index 120

An Embedded Decryption/Decompression Engine using Handel-C

Farnaz Gharibian and Kenneth B. Kent
Reconfigurable Computing Laboratory

Faculty of Computer Science
University of New Brunswick

Fredericton, NB, Canada
{f.gharibian, ken}@unb.ca

Abstract

Speed and security of data streams are two key factors in different areas such as data communication
and multimedia. Compression algorithms are applied to data streams to increase their communication
speed while encryption algorithms are used for assuring the security of the data transfer. AES and
LZ77 are two well known algorithms for data encryption and compression respectively. In this paper we
propose a model to implement both algorithms, decryption and decompression, in a Field Programmable
Gate Array chip. Such a design must address the issues of optimal resource usage of the FPGA, and
balance between the throughput of both algorithms. Handel-C [1] is considered as the specification
language for this design.

1 Introduction

The rapid growth of communication data (e.g. audio and video) is powered by faster systems de-
manding greater speed. To optimize the speed of data transferring in data communications, compression
algorithms are developed to reduce the size of the data on the network. On the other hand, security of
transferring data has recently become an important issue. Encrypting the data before sending it to the
destination is a mechanism for providing data security. Encryption algorithms are developed for this
purpose. To benefit both speed and security in working with data streams, encryption and compression
algorithms are used together for sending data. By this approach, data is sent with higher speed while
keeping the security.

The problem arises when there is a huge amount of encrypted and compressed data that requires
decryption and decompression in real time at the destination. The software algorithms for decryption
and decomposition lack high performance in real-time processing thus resulting in a delay or jitter ap-
pearance in the media. Implementing the algorithms in hardware, however, may significantly improve
performance. Moreover, the advantage of parallelizing the algorithms is much more realized if they are
implemented in hardware.

1

Figure 1. High-level architectural view of decryption/decompression (DecRO) engine

Field Programmable Gate Arrays (FPGAs) have been proven to be very effective and efficient devices
on which to implement high performance algorithms [2]. FPGA technology has become powerful, less
expensive and more practical for use in real-time applications. FPGAs perform at much faster data rates
than their equivalent software implementations because they can do multiple calculations in parallel.

This paper discusses work on a high performance intellectual property (IP) core for real-time data
decryption and decompression. By implementing an efficient algorithm for each on a single FPGA,
better performance will be achieved while meeting real-time constraints and delivering high quality
streamed data (i.e. video and audio).

The resulting decryption/decompression (DecRO) engine [3] design is of interest to a company in
the gaming industry. A user selects from an interface the choice of game that they wish to play. Any
game selected is loaded from compact flash memory where it resides as encrypted and compressed data.
During loading it is given to a software program to prepare it for game play by the user. The bottleneck
in this system is the software part that is going to decrypt and decompress the data. This bottleneck is
viewed as ”dead time” and is desirable to be minimal to reduce user irritation.

New algorithms in this area are developed continuously. A flexible solution is needed that can be
adapted to the changes in these algorithms. The FPGA platform provides a flexible solution to various
decryption and decompression algorithms while achieving hardware acceleration needed for computa-
tionally intensive processes. This reconfigurable platform also provides the flexible implementation of
new decryption and decompression algorithms. Different algorithms can be selected and dynamically
downloaded into the platform to reconfigure the hardware based on the needs of the users.

2 Related work

Various hardware implementations of decryption and decompression algorithms have been carried
out by other researchers. Huebner et al. [4] published an approach of compressing configuration data
using the LZSS compression algorithm at design time and decompressing them with a hardware module
implemented on an FPGA during run-time. Li et al. [5] used a lossless compression algorithm in data
transmission and storage applications.

A pipelined implementation of AES is proposed in [6, 7, 8]. Rouvroy et al. [9] proposed an AES
encryption/decryption design on one FPGA board. Akil et al. [10] developed a hardware implementation
of GZIP which is a lossless compression/decompression algorithm. They implemented their architecture
on a Xilinx Virtex XVC400 FPGA that uses a PCI bus for data transfer. The results show that the
architecture is about two times faster than the software version.

Ou et al. [11] developed an Image Compression Encryption Scheme (ICES). They implemented their

2

Figure 2. DecRO engine architecture

design in two separate Altera chips and achieved a throughput of 330 Mb/s with a maximum clock rate
of 40 MHz.

The proposed model in this paper is different as it performs both the decryption and decompression
in a single chip together. By putting both together on a single chip we have a high bandwidth commu-
nication link between the components. As well, the choice of block-based algorithms, AES and LZ77,
permits pipelining of blocks between decryption and decompression. In this case, decompression can
begin while the next block is decrypted. We also intend to make a balance between the implemen-
tation of the two algorithms to achieve higher performance. In addition, it will also be developed to
support the replacement of the algorithm blocks with newer algorithms for future updates. Encryption
and Compression standards are constantly changing with improvements for delivering more security
and compaction of data. Designing with the intention to support replacement of these hardware blocks
ensures the longevity of the design.

3 Encryption and Compression

Different algorithms are used in encryption and compression systems. In this work, we investigate two
specific algorithms; Rijndael algorithm which is known as the Advanced Encryption Standard (AES) for
encryption and LZ77 from Lempel Ziv family for compression.

AES was published in 1998 by Vincent Rijmen and Joan Daemen [12] and was originally submit-
ted with the name ”Rijndael”. In 2001, the National Institute of Standards and Technology (NIST)
announced the selection of Rijndael as the AES standard. Since then AES has been accepted for en-
crypting sensitive data streams. AES is a symmetric block cipher that supports different key lengths of
128, 192 or 256 bits. The algorithm makes different transformations on data blocks to encrypt them.
For each input block, the algorithm starts with adding the first key to the block. Several iterations of

3

transformations called rounds will then be performed. Each round is composed of a sequence of four
transformations: ByteSubstitution, ShiftRows, MixColumns and AddRoundKey. The final step is per-
forming a round without the MixColumns transformation.

LZ77 is part of the Lempel-Ziv family of algorithms for lossless data compression. The algorithm
was proposed in 1977 by Jacob Ziv and Abraham Lempel [13]. LZ77 is a dictionary-based compression
algorithm that uses already processed data as a dictionary. The LZ77 algorithm functions by splitting
a sequential input stream into blocks. Each block is parsed by moving a fixed-size window (sliding
window) over the data. When a phrase is encountered that has already been in the sliding window, the
algorithm attaches a pair of values corresponding to the position of the phrase in the sliding window and
the length of the phrase to the output.

4 DecRO

A hardware platform for high-speed processing of decryption and decompression is presented. The
high level architectural view of the decryption/decompression engine is shown in Figure 1. The engine is
comprised of the AES component, LZ77 component and two buffers, the Intermediate buffer and Output
buffer. The AES component is capable of performing decryption of the incoming data stream at a rate
that does not provide a significant lag in communication time. This satisfies secure data transfer without
negatively impacting the data delivery. The decrypted data goes to the Intermediate buffer to be used by
the LZ77 component. LZ77 is a decompression hardware circuit that will allow the information to be
transferred at a higher rate since it is compressed. The final decompressed and decrypted data goes to
the Output buffer ready to be used by other devices. We make use of pipelining and parallelism in our
design to obtain higher performance.

A more detailed design of the engine is shown in Figure 2. AES performs the decryption process
in different steps. The AES decryption algorithm operates by applying the inverse of all the transfor-
mations described for encryption in reverse order for each data block. In each step, a round is called
which contains four particular transformations: InvByteSubstitution, InvShiftRow, InvMixColumn and
addRoundKey [12]. The Initial Round process performs addRoundKey. Round Loop iteratively calls the
mentioned transformations. The number of the iterations is related to the key length. Final Round calls
InvByteSubstitution, InvShiftRow and addRoundKey transformations. LZ77 decompresses the input data
by reading data blocks. Figure 2 shows LZ77 with two block components. In each block, data will
be processed sequentially by reading the phrases. If the input phrase has been compressed, the related
string is extracted from the sliding window and then appended to the output. The sliding window is a
fixed size buffer that keeps the last decompressed data.

Implementation of both decryption and decompression components together while achieving high
performance is a challenging issue. We considered pipelining and parallelism in the design of AES
and LZ77 components to achieve high performance. However, full pipelining and parallelism requires
a large amount of resources. Therefore, there is a trade off between achieving higher performance and
using fewer amounts of resources.

Many related works in decryption/decompression hardware design implement only one algorithm in a
chip, while in our design synchronization between two different algorithms, AES and LZ77, in one chip
is another challenging issue. If AES and LZ77 components do not work with the same speed, buffer
overflow/underflow will occur. In a buffer overflow situation, the AES component should pause (or slow
down) until LZ77 gets data from the buffer. In a buffer underflow situation, the LZ77 component should

4

Figure 3. AES design

pause (or slow down) and wait for the AES component to produce data and put it in the buffer.
The AES and LZ77 designs are described in Sections 4.1 and 4.2 respectively. Using parallelism and

pipelining in the AES and LZ77 designs increases the performance of each design. There should be a
balance in data throughput with the components to ensure no over/underflow occurs with the connecting
channel. Avoiding channel contention permits both components to operate at maximum performance
without reaching a blocking condition.

4.1 AES Design

The data independency between data blocks is used to parallelize the AES implementation. The design
of parallelizing the decryption algorithm in different blocks is shown in Figure 2. Each input data block
goes to a different AES block. The number of AES blocks is a factor of improving the performance.
Considering two AES blocks shown in Figure 2, the speed of the decryption would be almost twice.

Moreover, a single iteration of the Round Loop of each AES block is designed in a component. Up
to n components can then be used in a pipeline while n represents the number of iterations in the loop
as shown in Figure 3. Therefore, the speed of each block is increased by a factor of n ignoring the

5

Figure 4. LZ77 design

overheads. The rounds of the Round Loop are implemented in separate components (see Figure 3.a).
Figure 3.b shows the pipeline design of different transformations that are used in a Round. The number
of components is related to the key length. For example, 9 components will be used for AES-128 that
uses keys with 128 bits length.

4.2 LZ77 Design

Since each data block is individually compressed, the decompression of the different data blocks can
be parallelized. The number of block components in LZ77 depends on the size of the block data, the
speed of AES and the speed of the device that uses the decompressed data. During the processing of
a block, the data stream of another block can be sent to a different component for processing. We are
going to use pipelining in the design of each block component in LZ77. Three of the pipeline stages
are shown in Figure 4. Stage 1 is reading the phrase from the input buffer of the block. In Stage 2, the
phrase is checked to see whether it is compressed. The substring of the phrase is found in Stage 3 and
will be added to the Output buffer.

5 Implementation

Handel-C is a high level hardware description language that is based on ANSI-C [1]. Handel-C allows
software designers to easily convert their algorithms into a hardware implementation and also allows
hardware designers the freedom to easily write functional descriptions of hardware systems. While
Handel-C implements only a subset of the ANSI-C standard, it also includes a number of hardware
specific constructs to support development of hardware.

We used Handel-C as our specification language for the DecRO engine. Handel-C provides a higher
level of specification from the more structural based hardware languages, VHDL and Verilog. Assign-
ments (except signal assignments) and the delay keyword both take one clock cycle to complete. The
delay keyword does nothing but consume a clock cycle. It can be useful to break combinational loops
or to avoid resource conflicts. The key distinction between Handel-C (for hardware) and ANSI-C (for
software) is the use of the par keyword to denote multiple operations running in parallel.

We took advantage of parallel programming that is available in Handel-C. Our two modules, Decryp-
tion and Decompression work in parallel. We have used a FIFO channel for the communication buffer
between these two modules. Figure 5 shows the implemented design of our engine. The two modules,

6

Figure 5. DecRO Implementation

Decryption and Decompression, communicate with each other using a 16-bit FIFO channel. The De-
cRO engine reads 32 bits of compressed-encrypted data from the input device and sends out 32 bits
decrypted-decompressed data to the receiver.

RAMs and ROMs can be implemented directly using the ram and rom keyword. Specifying the block
parameter in conjunction with the ram keyword can identify Block RAMs in a target FPGA device.
Normal variables are implemented as flip-flops. In the decryption module, we used different rams for
storing SBoxes and Galois Field multiplications. To increase our efficiency, dual-port block RAMs are
used. By using dual-port block rams, we may access two different locations in a ram at the same clock
cycle. Parallel access to the RAM block is considered in the decryption module to improve the speed as
shown in Figure 5. There is parallel access to the multiplication and SBox RAM blocks in two modules
of the Round Loop process.

A pipelined architecture is used in designing the decompression module. Our pipeline has four stages
as shown in Figure 5 and is an asynchronous pipeline. Channels are used for communication between
stages. Stage one, ”Read”, gets the data from the interface FIFO channel between the decryption and
decompression and puts them in data chunks to send to the next stage. Stage two, ”Compare”, works
on the data and gets the needed information based on if the data is compressed. If the data is not
compressed it gets the next character otherwise the offset and length of the data that is compressed.
Stage three, ”Process”, gets the information and adds the character to the sliding window. In the last
stage, ”Out”, decrypted/decompressed data will be sent out in 32 bit chunks.

7

Table 1. Throughput for different Implementations

Module Sequential (Mbps) Parallelism (Mbps) Pipelining/RAM Optimization (Mbps)

Decryption 22.22 35.90 101.7

Decompression 47.90 80 193.53

DecRO Engine 15.22 26.27 101.36

Table 2. Performance Results

Module Throughput Maximum Frequency Resource

(Mbps) (MHz) (# of 4 input LUTs) (# of BRAMs)

Decryption 101.7 102.166 1453 20

Decompression 193.53 205 309 0

DecRO Engine 101.36 108.554 1483 20

6 Simulation Results

Three different implementations are considered for our decryption/decompression engine. Table 1
shows throughput based on megabits per second (Mbps) for the modules in different implementations.
Column one shows the results for a sequential design of both decryption and decompression. Column
two shows the results after adding parallelism in the design of both the decryption and decompression
modules. As can be seen, throughput of the modules is almost increased by a factor of two. The
last column which is based on the design shown in Figure 5, the decryption module is improved by
adding parallel accessing to RAM blocks and the decompression module is improved by using a pipeline
architecture. In the final design, DecRO has reached a throughput that is almost four times of the
throughput in the second design.

The implemented DecRO engine is evaluated based on three different parameters: Throughput, Max-
imum Frequency and Resources. The results shown in Table 2 are based on the final design in Figure 5.
Column one shows the throughput of the design. Column two shows the maximum frequency and col-
umn three is the consumed resources.

The maximum frequency is calculated by synthesizing VHDL files of the modules using the Xilinx
ISE tool targeting the Xilinx Virtex-II Pro chip. VHDL files are created from Handel-C codes using the
Celoxica DK tool.

The Throughput(DataRate) is calculated as follows:

8

DataRate =
MaxFrequency ∗ InputBits

NCL −NCF

(1)

Where NCF represents the number of clock cycles for receiving the first output data and NCL represents
the number of clock cycles for receiving the last output data.

We measured the consumed resources for each module after place and route using the Xilinx ISE tool
targeting the Xilinx Virtex-II Pro XC2VP100 chip. The resource reports are based on the number of 4
input LUTs and Block RAMs used in each module. As it is shown in Table 2, the Decryption module
uses more resources than Decompression module.

The DecRO engine throughput and frequency is limited by the decryption module. As the results
show, by applying a pipeline design to the decompression module, very high throughput and frequency
was achieved. The overall resource usage was one of our key factors. We wanted to implement this
module on an FPGA chip where our DecRO engine is not the main function, but instead claims unused
resources. The results shows that we have consumed few resources for the design of our engine.

7 Discussion

Our engine has achieved the data throughput of almost 13 MBps. This data rate can be used in con-
junction with flash memory without having any significant delay (other than filling the DecRO pipeline)
during transferring information while decrypting and decompressing.

Based on the results, two major improvements are as follows:

• The Decryption module should work at a higher frequency since Table 2 shows that the frequency
of the decryption module is much lower than the decompression module.

• The Decompression module should work in such a way that is adaptable to the decryption module
for achieving the ideal performance for the DecRo engine.

By applying these changes, we can achieve a more powerful DecRO engine that can work with newer
faster versions of Flash Memory cards.

8 Conclusion

We implemented DecRO, a high performance decryption/decompression engine as a custom hardware
chip. The custom hardware is developed using a Field Programmable Gate Array (FPGA) that allows
for rapid prototyping. Handel-C is used as the hardware specification language. AES and LZ77 are
considered as the decryption and decompression algorithms that are implemented in the DecRO engine.
The performance of the engine will be further increased by using more parallelism and pipelining in the
implementation of the algorithms, in progress.

Our goal is to improve the design of DecRO in a way that it can support different decompression and
decryption algorithms in a FPGA with high performance. This design can be used in a large area of
applications and can support the interchange of different decryption and decompression algorithms.

9

Acknowledgment

The authors would like to thank Canadian Microelectronics Corporation (CMC) and Natural Sciences
and Engineering Research Council of Canada (NSERC) for supporting this research.

References

[1] Celoxica Ltd.,Handel-C Language Reference Manual, 2003.

[2] S. D. Brown, R. J. Francis, J. R., and Z. G. Vranesic, Field-Programmable Gate Arrays. Kluwer
Academic Publishers, 1992.

[3] F. Gharibani and K. B. Kent, “A configurable decryption/ decompression (decro) engine,” Euromi-
cro Conference on Software Engineering and Advanced Applications (SEAA) Work-In-Progress
Session, 2007.

[4] M. Huebner, M. Ullmann, F. Weissel, and J. Becker, “Real-time configuration code decompression
for dynamic fpga self-reconfiguration,” 18th International Proceedings on Parallel and Distributed
Processing Symposium, 26-30 April 2004.

[5] M.-B. Lin, J.-F. Lee, and G. E. Jan, “A lossless data compression and decompression algorithm
and its hardware architecture,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 14, no. 9, pp. 925–936, September 2006.

[6] N. Nedjah, L. Mourelle, and M. Cardoso, “A compact piplined hardware implementation of the
aes-128 cipher,” Proceedings of the Third International Conference on Information Technology:
New Generations (ITNG’06), 2006.

[7] A. Hodjat and I. Verbauwhede, “A 21.54 gbits/s fully pipelined aes processor,” 12th Annual IEEE
Symposium on FPGA Field-Programmable Custom Computing Machines(FCCM), pp. 308– 309,
20-23 April 2004.

[8] H. Li and J. Li, “A high performance sub-pipelined architecture for aes,” IEEE International
Conference on omputer Design: VLSI in Computers and Processors (ICCD), pp. 491–496, 2-5
Oct,2005.

[9] G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, and J.-D. Legat, “Compact and efficient encryp-
tion/decryption module for fpga implementation of the aes rijndael very well suited for small em-
bedded applications,” Proceedings of the International Conference on Information Technology:
Coding and Computing(ITCC’04), vol. 02, p. 583, 2004.

[10] M. Akil, L. Perroton, and T. Grandpierre, “Fpga-based architecture for hardware compres-
sion/decompression of wide format images,” Journal of Real-Time Image Processing, vol. 1, pp.
163–170, 2006.

[11] S.-C. Ou, H.-Y. Chung, and W.-T. Sung, “Improving the compression and encryption of images
using fpga-based cryptosystems,” Multimedia Tools Applications, vol. 28, no. 1, pp. 5–22, 2006.

10

[12] J. Daemen and V. Rijmen, AES Proposal: Rijndael. Erewhon, NC: Proton World Intl., March 9,
1999.

[13] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Transactions
on Information Theory, vol. 23, no. 3, pp. 337–343, 1977.

11

Quantifying Process Model Conformance Through

Minimal-Cost Approximations

Bruce Hamilton and Liqiang Geng

National Research Council Canada, Fredericton, NB, E3B 9W4

{Bruce.Hamilton,Liqiang.Geng}@nrc.gc.ca

Abstract. In this paper, we provide a solution for identifying the most

likely paths in concurrent-process models based on corresponding process

instances. The solution is a fixed-parameter tractable heuristic search for

workflow (Petri) nets with weighted transitions. The performance of the

algorithm was evaluated using eight noisy event logs from [3], where costs

were used in a potential conformance measure. The approach allows for

several applications towards descriptive analyses of the conformance

between a process model and an event log.

Key words: process mining, process conformance, process validation,

workflow, approximation.

1. Introduction

 Process mining refers to the automated discovery of high-level process models from the

use of workflow evidence found in the form of event logs. Typically, process mining is used by

developers to gain insight into the execution of a process. The approach described in this paper

attempts to accurately test the conformance between a process model and a corresponding event

log through the most likely sequence of events that the event log could have represented in the

model, and calculating the similarity between the sequence and the workflow model.

In the following section, we present a review of related works in the field of conformance

checking and process approximation. Section 3 provides the definition of our method for

identifying event traces, Section 4 shows an experimental evaluation of the approach, and

Section 5 concludes the work done.

2. Related Work

 Due to the high-level nature of process mining, there is an emphasis placed on the

readability and presentation of process models. This emphasis allows for a tendency of

neglecting the overall accuracy of the workflow in the model. The balancing act between the

accuracy and readability of process models has given rise to a number of useful metrics for

measuring the global quality of a process mining algorithm. A useful summary of these metrics

is found in [7], where a sizeable collection of process mining algorithms have their discovered

models tested against the event logs used. The set of metrics used on the models are grouped

into the dimensions of fitness, precision, generality, and structure. The approach developed in

this paper centers mainly on the fitness between a model and a log.

12

 The fitness of a model refers to the degree of elements in an event log that can be

replayed in the model by following the transitions designated in the model. There have been

several metrics proposed to handle the measurement of the fitness of a model, where some are

more successful than others. These metrics can be grouped into token-based, trace-based, and

event-based categories, where each metric gives an estimate of the rate of correctly parsed

instances of its target parameter.

In [6], an analysis of these various fitness measures is performed to offer an accurate

summary of the appropriateness of the current methods. In the conclusion of the review, it is

stated that the token-based approaches in [5,8] have an overly optimistic way of handling fitness,

and are unlikely to return a value lower than 0.4 when noise in a log is as high as 90%. The

metric used in the genetic process miner [3] is said to be too unpredictable at moderate noise

levels to be used as a descriptive measure for fitness. The review suggests that for very low

levels of noise, the trace based [8] and model level [9] metrics may be appropriate, whereas for

broader ranges of noise, the event-based metric [9] would serve best as a conformance measure.

Although the review of conformance measures gives good insight towards choosing a

conformance measure, all of the metrics mentioned use boolean values for whether or not a given

event or process instance parses correctly (i.e. they do not account for probabilistic bisimulation).

A more stochastic approach is described in [2], where Alves de Medeiros et al. describe a

method for comparing process models based on their most likely behaviours. This method is

useful for cases where two models need to be compared based on a given log, however it does

not provide a good measure for testing the conformance of probabilistic models. Instead, the

paper refers the reader to [4] for topics in the comparison of probabilistic process models.

In [4], a small set of metrics regarding the bisimulation of Markov processes in discrete

and continuous time are described. These metrics describe the “distance” between two

probabilistic Markov processes, which could easily be translated to any process model that has

directed arcs that are weighted in terms of probability. Approximation is also accounted for in

this paper, and other works for determining which process a Markov process shares the most

similarity [4].

The metrics and approximations for Markov processes only seem to be tailored to

processes where there is a static number of states and transitions between a set of comparable

process models. This would cause some difficulty when calculating process models with missing

activities, such as in the case where events may be skipped or added during the execution. As

well, the methods are only used when comparing two or more models, which could be

ineffective for our application, due to the impredictability of process model structure when

mining a workflow log.

A more relevant approach was introduced in [1], where comparisons and approximations

were made with Markov processes at the event level. The proposed method uses a heuristic

search to find the best path in a process model for an event trace that does not necessarily follow

the behaviour described in the model. The example process models displayed in the paper were

finite state machines, which are not as expressive as Petri nets in terms of concurrency, however

the approach can easily be extended to account for the additional models. In the following

section, we describe an approach for process instance approximation using a heuristic search

where concurrency is present.

13

3. Our Approach

 As stated in the previous section, our approach acts as an extension to the approximation

algorithm found in [1] for Markov processes. The key difference is that our algorithm accounts

for process models that can represent concurrency (i.e. workflow nets). A workflow net is

simply a connected Petri net with one start place and one end place, a much better definition can

be found in [3]. The approximation algorithm for our implementation is shown in Figure 1,

which makes use of a QueueElement data structure (Figure 2), and insertion and deletion

functions (Figures 3 and 4, respectively).

 The basic approach used by the algorithm to overcome concurrency is to maintain a list

of active places for every branch of the search tree. Rather than attempting to insert only the

outgoing states from the current location like in [1], it is necessary to add all possible insertions

that would follow a given set of active places in a workflow net. When inserting a new transition

to the approximation, we need to enforce that all of the transition’s input places are active.

Otherwise, the configuration is illegal, and should therefore not be considered as an option.

 In terms of an upper bound for running time, the algorithm falls into O(n
k
), where n is the

length of the process and k is the maximum cost parameter. This is because instances of

concurrency in a process model require that any possible sequence of events be legal during

execution. In practice, the algorithm seems to work quite well. The running times for

approximations of entire logs is shown in the results section (Section 4).

 We consider this approach to be useful as a descriptive measure for process-model

bisimulation, because it can return precise results for each process instance. For instance, the

approach may be used to simply show the average cost for the set of process instances (as shown

in the next section), or it could be used to offer insight into common faults in the log or model,

much like how cost-based approximations for spelling could offer statistics for common spelling

errors. In the following section, we include an example of using the cost as a potential fitness

metric, and we show a screenshot of the implementation using a descriptive report for a single

process instance.

Fig. 1 (Approximation Algorithm)

Al gor i t hm appr oxi mat e Wor kf l owNet(N Pr ocess I nst ance, P, I nt eger k r et ur ns) : QueueEl ement

l et e be a new QueueEl ement

l et Qbe a newPr i or i t yQueue r anked i n non , - decr easi ng or der of c cost ()

l et s0 be t he st ar t pl ace of N

f or al l t r ansi t i ons t adj acent t o s0 :

enqueue i nser t i on nul l(, t , P, {s0 } , 0)

f or i f r om 2 t o k :

i f Pi[] = t : enqueue nul l (, t , P af t er i (), {s0 }, (i - 1)*Del et eCost)

whi l e Qi s not empt y :

e dequeue Q= ()

i f ec. > k: r et ur n nul l

el se i f et. t o = nul l : r et ur n e

14

el se:

eS eS. = . Ð {pl aces bef or e e t . t o} U {pl aces af t er e t . t o}

f or al l s i n eS . :

f or al l t s af t er s:

enqueue i nser t i on (e t. t o, e.t s, eP ec. , .)

enqueue del et i on (e.t t o, e.t t o, eP. , ec.)

i f et. t o = nul l and ec. i s at most k: r et ur n e

el se: r et ur n nul l

Fig. 2 (Queue Element)

Let a Queue El ement Ebe a t upl e t (f r om t, t o P, , i S c wher e, ,) :

• t f r om i s t he t r ansi t i on t he move i s comi ng f r om ,

• t t o i s t he t r ansi t i on t he move i s goi ng t o ,

• P i s t he st at e of t he pr ocess i nst ance hol di ng a l i st of event s ,,

• i i s t he i ndex wi t hi n t he pr ocess i nst ance ,

• S i s t he set of cur r ent l y mar ked pl aces and ,

• c i s t he cur r ent cost of E .

Fig. 3 (Insertion)

Funct i on i nser t i onQueueEl ement (e r et ur ns QueueEl ement):

l et St o be t he set of pl aces goi ng i nt o t t o

i f St o i s not a subset of S :

ec. = i nf i ni t y

el se i f et. t o ≠ ePei . [.]:

ec. = ec. + I nser t Cost

add et . t o t o eP . at i ndex e i .

e i. e i= . + 1

r et ur n e

Fig. 4 (Deletion)

Funct i on del et i onQueueEl ement (e r et ur ns QueueEl ement):

i f et. f r om≠ nul l and |eP. | > e i. + 1:

eP. = eP. Ð ePei. [. + 1]

ec ec. = . + Del et eCost

15

el se:

ec i nf i ni t y. =

r et ur n e

4. Evaluation

 To show how well the algorithm may be suited as a conformance measure, we applied the

method to eight logs taken from the sample logs from the ProM website [10]. The eight logs

used were taken from the noisy set of logs found in the GeneticMinerLogs section, consisting of

four logs with 5% noise and four logs with 10% noise. The logs in the section all have

designated kinds of noise, based on how tasks are removed, replaced, or added. The only logs

used in this study were the logs that include all noise types.

 The implementation of the algorithm was programmed entirely in Java. The data

structure used for the process model was a causal matrix, defined in [3], which was implemented

using the class “java.util.Vector” for all the sets found in the causal matrix definition. The causal

matrix data structure can easily translate to workflow nets and heuristic nets [3].

 The conformance of the logs were tested with the logs’ ideal models, as defined in their

respective “hn” files, which are all displayed as workflow nets generated by the implementation

in Figure 6. Each log was tested with k values from ranging from 1 to 5, and InsertCost and

DeleteCosts of 1.0. The entire results are shown in Table 1 on the next page.

 In the results table, we record the mean, max, min, and standard deviation of the lowest

approximation cost for all process instances omitting the cost values that are greater than k. The

number of instances with costs greater than k are shown in the (>k) column. The last column

shows the time taken for approximations in milliseconds. To give a value of the cost with

reference to the size of the log, and to give an example of an appropriate fitness metric, the table

includes a new fitness metric given under the column labelled “fitness” in Table 1.

To give an example of how well this metric describes fitness, consider the first log. Not

including superficial start and end tasks, the log has a mean of 5.76 events per process instance.

With approximately 1.5 corrections for each trace to allow an appropriate fit with the model, we

obtain a fitness value of 0.74 as found in the table. To compare this metric with the proper

completion measure, which simply gives a fraction of traces that properly conform to the model,

the value returned by proper completion is 0. Other measures, like the event level metric, could

return a value closer to the fitness metric proposed in this paper, but would not be able to return

an analysis of what changes would need to be made to the log or model. An simple example of

such a response is shown in Figure 5, where a screenshot of the implementation is shown

displaying an approximation for a given process instance, including the appropriate actions for

modifying the trace.

Fig. 5: A visual display of the approximation of process instance, “A,B,L”.

16

17

Table 1: Experimental Results

Model Noise k Mean Std dev Max Min (>k) Fitness Time (ms)

A12 5.00% 5 1.53 1.42 4 0 0 0.735 40.60

 4 1.53 1.42 4 0 0 0.735 11.99

 3 0.82 1.60 2 0 3 0.765 9.02

 2 0.82 1.24 2 0 3 0.796 5.61

 1 0.24 1.31 1 0 8 0.878 4.01

 10.00% 5 1.71 1.30 4 0 0 0.698 17.79

 4 1.71 1.30 4 0 0 0.698 15.51

 3 1.00 1.49 2 0 5 0.730 13.35

 2 1.00 1.14 2 0 5 0.761 8.59

 1 0.29 1.34 1 0 15 0.855 5.79

BN1 5.00% 5 2.00 1.91 5 0 0 0.942 1410.71

 4 1.62 1.96 4 0 1 0.944 865.94

 3 0.38 2.41 2 0 5 0.955 219.62

 2 0.38 1.79 2 0 5 0.966 78.11

 1 0.23 1.32 1 0 6 0.980 16.62

 10.00% 5 1.90 2.22 5 0 4 0.921 4974.37

 4 1.55 2.12 4 0 6 0.928 1272.91

 3 0.72 2.32 3 0 12 0.940 275.18

 2 0.41 1.97 2 0 15 0.956 100.56

 1 0.28 1.40 1 0 17 0.974 20.32

Herbst 5.00% 5 0.35 0.83 4 0 0 0.975 11.87

3.4 4 0.35 0.83 4 0 0 0.975 11.30

 3 0.25 0.84 2 0 1 0.976 12.11

 2 0.25 0.73 2 0 1 0.978 10.62

 1 0.10 0.68 1 0 4 0.985 9.62

 10.00% 5 0.58 0.93 4 0 0 0.955 14.66

 4 0.58 0.93 4 0 0 0.955 14.44

 3 0.50 0.93 3 0 1 0.956 15.60

 2 0.44 0.87 2 0 2 0.959 14.75

 1 0.20 0.83 1 0 8 0.972 11.96

Herbst 5.00% 5 0.10 0.54 4 0 0 0.993 61.91

6.37 4 0.10 0.54 4 0 0 0.993 78.69

 3 0.04 0.55 2 0 2 0.994 69.57

 2 0.04 0.44 2 0 2 0.995 34.95

 1 0.01 0.36 1 0 4 0.997 33.70

 10.00% 5 0.24 0.76 4 0 0 0.983 86.24

 4 0.24 0.76 4 0 0 0.983 91.25

 3 0.16 0.76 3 0 3 0.984 79.97

 2 0.14 0.67 2 0 4 0.986 40.18

 1 0.04 0.58 1 0 11 0.992 35.95

18

Fig. 6: The test models used in the experiment.

(a) A12

(b) BN1

(c) Herbst Fig 3.4

(d) Herbst Fig 6.37

5. Conclusion

 In summary, we have developed a working algorithm for discovering the most probable

sequence of transitions to be taken in a process model, given a process instance. The algorithm

has been shown to be applicable as a basic metric for determining the conformance between a

process model and an event log, and has been proposed as a highly descriptive way for

determining common faults in a log or model.

 Further applications for this approach could involve a trace-by-trace monitoring of a

process execution, where exceptions are thrown when the execution deviates by k operations.

This could allow for monitoring workflow in an enterprise with a reasonable amount of

allowance for different actions, while providing appropriate feedback to the administrator when

exceptions are raised.

19

 The algorithm used in this implementation provides a good beginning for the use of

approximations in concurrent process models, but it has yet to be optimized for performance.

Future work on this approach should involve the refinement and specialization of the

implementation.

[1] Jonathan E. Cook and Alexander L. Wolf. Software process validation: quantitatively

measuring the correspondence of a process to a model. ACM Transactions on Software

Engineering and Methodology, 8:147–176, 1999.

[2] A. K. Alves de Medeiros, W. M. P. van der Aalst, and A. J. M. M. Weijters. Quantifying

process equivalence based on observed behavior. Data Knowl. Eng., 64(1):55–74, 2008.

[3] A.K. Alves de Medeiros. Genetic Process Mining. PhD thesis, Eindhoven University of

Technology, 2006.

[4] Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics for

labelled markov processes. Theor. Comput.Sci., 318(3):323–354, 2004.

[5] A. Rozinat and W. M. P. van der Aalst. Conformance checking of processes based on

monitoring real behavior. Inf. Syst., 33(1):64–95, 2008.

[6] A. Rozinat, M. Veloso, and W. M. P. van der Aalst. Evaluating the quality of discovered

process models. In W. Bridewell, T. Calders, A.K. de Medeiros, S. Kramer, M.

Pechenizkiy, L. Todorovski (Eds.), Proceedings of Induction of Process Models, pages 45–

52, Antwerp, Belgium, 2008.

[7] A. Rozinat, A.K. Alves de Medeiros, C.W. Günther, A.J.M.M Weijters, and W.M.P. van

der Aalst. The need for a process mining evaluation framework in research and practice.

In Business Process Management Workshops, pages 84–89, Eindhoven, Netherlands,

2008.

[8] A. Rozinat, M. Veloso, and W.M.P. van der Aalst. Using Hidden Markov Models to

Evaluate the Quality of Discovered Process Models. Extended Version. BPM Center

Report BPM-08-10, BPMcenter.org, 2008.

[9] A. J. M. M.Weijters and W. M. P. van der Aalst. Rediscovering workflow models from

event-based data using little thumb. Integr. Comput.-Aided Eng., 10(2):151–162, 2003.

[10] ProM Official Website. URL = http://prom.win.tue.nl/tools/prom/

20

A Methodology for Rapid Optimization of HandelC Specifications

Joey C. Libby Kenneth B. Kent

Faculty of Computer Science Faculty of Computer Science

University of New Brunswick University of New Brunswick

Fredericton, New Brunswick,

Canada

Fredericton, New Brunswick,

Canada

g6x2d@unb.ca ken@unb.ca

Abstract

Utilizing high level hardware description languages for the creation of customized circuits facilitates

the rapid development and deployment of new hardware. While hardware design languages increase

the speed at which hardware can be developed, creating hardware designs that are both efficient in

resource usage and processing speed can be time consuming and require much experience. This

problem is compounded more by the long design cycle times that are introduced by the long

compilation and synthesis times that are required to translate a high level hardware description

language to a circuit. This problem is addressed by performing some of the optimizations

automatically, pre-synthesis, reducing the total number of synthesis cycles that are required, saving

much development time.

1. Introduction

High level hardware description languages provide a means for new hardware designers to enter

the field of hardware design as well as providing a tool for experienced hardware designers to rapidly

develop and prototype new technologies. One problem that can plague novice and experienced

designers alike is the creation of hardware designs that both perform the task they are designed for

quickly as well as utilize available resources as efficiently as possible.

Optimizing hardware designs can be a tedious and time consuming process as possible

optimizations are made to a design and then are tested. This cycle of design and testing includes the

compilation and synthesis of the hardware design which can be extremely time consuming. Large

designs can take hours or even days to compile and synthesize, leading to large amounts of wasted

downtime in the development process.

One possible solution to this problem is to perform some of these optimizations automatically,

allowing the designer to eliminate a portion of the compilation and synthesis cycle, thus reducing the

amount of downtime and speeding the development cycle of new hardware.

This work discusses the changes that will be made to the current hardware design cycle and how

these changes will affect the speed at which development of hardware is completed. The methodology

will then be tested by applying a tool which automatically identifies simple parallelism in Handel-C

hardware designs to several hardware design projects.

21

2. Background

This section will discuss the background information on HandelC and the automatic extraction of

parallelism that is applicable to this paper.

2.1 HandelC

HandelC [1] is a high level hardware description language that bears much resemblance to the

ANSI C programming language. While HandelC is very similar to ANSI C in many respects, there are

some major differences between the two languages. HandelC does not support the entire ANSI C

specification, removing support for some software constructs, most importantly support for runtime

recursion is absent from HandelC. HandelC, along with support for a subset of the ANSI C

specification, includes extra support useful for hardware description. Included in this extended support

are constructs for input and output, communications, and control flow constructs for controlling the

concurrency of a design. Concurrency in a HandelC program is defined by using the par {} and seq

{} statement blocks. Sequential instructions wrapped in a par {} statement will be executed

concurrently, while statements wrapped in a seq {} statement will be forced to execute sequentially.

Example 1 shows par and seq statements in a simple HandelC design.

int 8 a,b,c,d,e,f,g,h;

a = 1; b = 2; c = 3; d = 4;

par {

 d = a + b;

 e = c + d;

}

seq {

 f = d+e;

 g = d*e;

}

Example 1: Example of par and seq Statements

The existence of the parallel and sequential block keywords provides the facilities necessary for a

designer or an automated tool to easily exploit parallelism without the need of generating control logic

to do so.

2.2 Automated Extraction of parallelism

Identification of simple parallelism, that is sequential blocks of hardware code that can be

executed in parallel, can have a huge impact on the performance of the hardware system that is being

designed. The tool that will be used to apply optimizations for the purpose of this paper can be found

in [2].

22

Given a HandelC source file, this tool is capable of parsing and extracting simple parallelism from

the source file. This information is then relayed to the hardware designer who can implement the

proposed changes in order to build a more optimized version of the original hardware design.

Figure 1 shows an overview of the operation of the automated parallelism extraction tool. The tool

operates by taking, as input, a HandelC hardware definition file. From this source file the tool creates

an abstract syntax tree, annotated with additional information that is required to compute the

dependency graph from the source file. Upon completion of the syntax tree, it is used to generate a

dependency graph structure for the hardware design. This dependency graph structure is then used to

determine which individual lines of source can potentially be executed in parallel. Currently the tool

then applies a greedy algorithm which builds maximum size parallel blocks from the remaining

available lines of source code. This approach generates large parallel blocks which in turn reduce the

overall run time of computations on the hardware.

Figure 1: Automated Parallelism Extraction

Once the tool has determined where parallel blocks may be added to the source hardware design, it

produces a report for the designer which details the necessary modifications that must be performed in

order to exploit the available parallelism. Table 1 illustrates the report output of the tool.

HandelC Source
Parsing

Dependence
Analysis

Parallelism
Extraction

Reporting

23

Source Line# Source Action

* Par { Add

1 Statement 1 None

2 Statement 2 None

3 Statement 3 None

7 Statement 7 Move -

8 Statement 8 Move –

* } Add

4 While Move +

5 Statement 5 Move +

6 Statement 6 Move +

9 Statement 9 Move +

Table 1: Tool Report

In testing, this tool has shown that it is capable of finding, on average, 78% of the simple straight

line parallelism that exists in a hardware design. This makes this tool well suited for the purpose of

demonstrating the effects of modifying the hardware design cycle as proposed in this paper.

3. Proposed Hardware Design Cycle

The design process shown in Figure 2 outlines the common method for performing hardware

design using a high level hardware description language. The hardware design process begins much

like that of a software design, by determining the requirements of the project. Following the

requirements analysis, the hardware specification can be written. Some important requirements for a

hardware system include logic usage (design size), power consumption, design speed and maximum

throughput. Upon completion of the hardware specification, the specification must be synthesized into

a logic network. This step of logic synthesis is time consuming and can contribute a large amount of

downtime to a complex project. Following the synthesis of a hardware specification, the specification

is tested in simulation to determine if the implemented functionality is correct. If problems are found

during the testing phase they must be corrected, and the corrected hardware specification must be re-

synthesized. If the implementation is correct, it can now be benchmarked to determine if the

performance of the hardware specification meets the requirements. If the specification does not meet

the requirements laid out in the requirements analysis phase the design must be improved through

various methods such as adding concurrency or pipelining. Following the design improvements stage,

the new specification must be re-synthesized, tested and benchmarked. These phases are repeated until

a specification that meets all of the requirements is created. This synthesized specification can then be

used to generate a physical device such as an ASIC or FPGA.

The problem with this design flow, is its heavy reliance on the time consuming synthesis process.

In this design flow synthesis is required to determine if the design meets many of the design

requirements, such as power consumption, speed, logic usage and throughput. The need to iterate

through a synthesis process repeatedly increases the amount of time that must be spent in the design

and implementation of a hardware system. The proposed methodology, shown in Figure 3, will allow

24

the creation of an optimized hardware specification while minimizing the amount of time that must be

spent in the synthesis process.

The proposed methodology improves on the current flow for hardware design by adding the

optimization sub-flow and restructuring the remainder of the design flow. The need to identify

concurrency manually is removed. Designs are made concurrent and pipelined automatically by the

hardware synthesis tools. Utilizing this automated optimization step allows much of the design flow to

be moved to a pre-synthesis stage, minimizing the number of times synthesis must be performed on a

given hardware design.

The remainder of this section will discuss the different stages in the new optimization design flow

methodology and discuss issues that must be dealt with for each stage.

Figure 2: Hardware Design Process

3.1 Optimization Sub-Flow

The optimization sub-flow, Figure 3, allows most of the optimization work, normally done

manually post-synthesis, to be completed pre-synthesis using automated compiler optimization. Each

of the individual stages in the optimization sub-flow will be described in detail.

3.1.1 Resource Estimation

Much research has been completed in the area of resource estimation for hardware specifications

[3,4,5]. Resource estimation allows a hardware designer the flexibility to quickly estimate how many

resources are being consumed by a given hardware design. This capability is vitally important to the

improved hardware design flow because it allows much of the design flow to be moved to the pre-

synthesis partition of the hardware design flow. The resource estimation step in the optimization flow

must be performed first in order to establish a baseline set of resource estimations on which the

Requirements
 Analysis

System
Design

Synthesis &
Technology
Mapping

Testing
& Benchmarking

Refinements

Delivery

25

optimizations will be judged. This will allow further stages in the optimization flow to evaluate the

impact of given optimizations on the hardware design. The baseline resource usage, combined with

the systems requirements will also provide a target for the optimizations. The resource estimation is

performed at two different points in the design flow, the first being the baseline resource estimation,

and the second after performing optimizations. The second pass of resource estimation is necessary to

determine the impact of changes made during the optimization steps. This post-optimization

estimation can then be compared to the pre-optimization estimation as well as the design requirements

in order to determine how to proceed.

Figure 3: Proposed Hardware Design Cycle

Requirements
 Analysis

System
Design

Synthesis &
Technology
Mapping

Testing
& Benchmarking

Refinements

Resource
Estimation

Concurrency
Analysis

Pipeline
Extraction

Resource
Estimation

Requirements
Analysis

Refinements

Delivery

 Optimization
Sub-phase

26

3.1.2 Identification of Parallelism

In this stage of the design flow, concurrency is extracted from the hardware specification. Much

research on identification of concurrency has been performed in the software field, most of which is

directly applicable to high level hardware description languages. Section 2.2 discusses the automated

parallelism extraction tool that will be used for the purpose of testing for this paper.

3.1.3 Pipeline Inference

In this stage of the design flow, a pipelined data path is extracted from the high level hardware

description. The pipeline(s) will be extracted using dependency data collected during the concurrency

extraction phase. This data will be used to determine if sufficient parallel blocks exist within the

design to form a pipelined data path. There have been several pieces of research work completed that

attempt to address several of the problem domains within automated pipeline inference. Some of the

problems addressed in this research include the problem of scheduling [6], pipeline optimization [7],

high level pipeline synthesis [8], pipelining of DSP applications [9] and finally vectorization of

pipelined datapaths [10]. The approach to pipeline inference to be used in this work will differ from

the previous works in that in [11] the pipelining process is not constrained to the high level hardware

description. The proposed approach will allow all modification to the hardware description to be

completed at the high level, changing the structure of the description itself, instead of generating lower

level pipelined structures such as netlists. The remainder of this section will discuss some of the

major issues that must be addressed when attempting to automatically extract a pipelined datapath

from a high level hardware description.

4. Testing the Modified Design Cycle

In order to demonstrate the merit of the modified hardware design cycle it will be necessary to test

the effects of this design cycle on real world hardware design projects. This section will discuss how

this testing will be performed as well as the two test case projects which were optimized using both

the standard hardware design cycle as well as the proposed hardware design cycle.

4.1 Testing Methodology

Currently tools do not exist for several of the stages in the modified hardware design process.

Figure 4 shows the availability of tools required for this methodoly. While a tool exists that allows for

the automated extraction of parallelism within a HandelC hardware definition, tools do not currently

exist that allow for the extraction of a pipelined data path or for performing pre-synthesis resource

estimation on a design. Without these tools it will still be possible to explore the impact of moving

more of the design process to the pre-synthesis stage, removing the need for multiple iterations

through the modification and compilation/synthesis stages of the design cycle.

27

Figure 4: Tool Availability

For the purpose of the two test cases that will be discussed in the coming sections, the projects

were completed first using no special tools and using the standard hardware design cycle. A non-

optimized version of the project was created first, followed by a hand optimized version of the design.

These hand optimized designs, along with the time that was needed to complete them will be used as

benchmarks alongside the versions that were optimized by the automated tool using the new hardware

design cycle.

4.2 Case Study 1: AES/LZ77 Engine

The first test case for the modified hardware design cycle that will be examined is a project that

utilized a combination of the LZ77 compression algorithm in conjunction with the AES encryption

algorithm to produce a hardware device which is capable of rapidly performing a sequence of

decompression and decryption on a stream of data.

LZ77 is part of Lempel-Ziv family algorithms for lossless data compression by Jacob Ziv and

Abraham Lempel [12]. LZ77 is a dictionary-based compression algorithm that uses already processed

data as a dictionary. The LZ77 algorithm functions by splitting a sequential input stream into blocks.

Each block is parsed by moving a fixed-size window (sliding window) over the data. When a phrase is

encountered that has already been in the sliding window, the algorithm attaches a pair of values

corresponding to the position of the phrase in the sliding window and the length of the phrase to the

output.

The AES algorithm was published in 1998 by Vincent Rijmen and Joan Daemen [13] and was

originally submitted with the name ”Rijndael”. In 2001, the National Institute of Standards and

Technology (NIST) announced the selection of Rijndael as the AES standard. Since then AES has

been accepted for encrypting sensitive data streams. AES is a symmetric block cipher that supports

different key lengths of 128, 192 or 256 bits. The algorithm makes different transformations on data

blocks to encrypt them. For each input block, the algorithm starts with adding the first key to the

block. Several iterations of transformations called rounds will then be performed. Each round is

composed of a sequence of four transformations: ByteSubstitution, ShiftRows, Mix-Columns and

AddRoundKey. The final step is performing a round without MixColumns transformation.

Upon completion of the hardware design which featured a tightly coupled LZ77 decompression

engine and AES decryption engine, the design was manually optimized. The design was carefully

analyzed in order to identify any potential areas where parallelism could be exploited, and trough a

process of iterative refinement, these parallel blocks were added and tested to ensure a positive impact

Automated Parallelism

Resource Estimation

Pipeline Extraction

Refinement and Code Generation

 Not Available

 Under Development

Available

28

on the overall system. When this phase of design was completed it was found that the system overall

contained 18 parallel blocks. While this was a positive outcome, and resulted in a much more efficient

hardware design, the amount of time which was required, approximately 24 hours, may have been

prohibitive under most circumstances, especially when rapid prototype development is required.

Following the completion of the manual optimization of the LZ77/AES engine, the modified

hardware design cycle was applied to an un-optimized version of the design. The automated

parallelism extraction tool was ran once on the source file, providing a report of all of the identified

parallel blocks that may be exploited. In this case, due to the relatively small size of the source file, the

tool provided nearly instantaneous feedback, identifying 78% of the parallel blocks that were

identified in the manually optimized version. These optimizations were then performed to the source

file, which was then compiled, synthesized and tested to ensure that the modifications were correct.

In this case the modified hardware design cycle proved to reduce the amount of time required to

apply optimizations to a design by a large factor. Dozens of iterations through the compilation and

synthesis steps were eliminated, and the entire process required only one iteration through the design

cycle. While the automated tool was unable to identify all of the parallelism that existed in the source

design, it was able to identify the majority of available parallelism. This, when coupled with the large

amount of time saved in the design process, supports the idea that moving more of the design cycle to

the pre-compilation and synthesis stage can have a large positive impact on the development times of

hardware.

4.3 Case Study 2: Irreducible Polynomials over GF(3)

This test case is created based on a previous project in which a co-designed hardware solution for

the software algorithm in [14]. This solution explored migrating only part of the software computation

into hardware, and while successful, it suffered from low performance due to communications

between the hardware and software partitions [15].

In order to alleviate the performance degradation caused by communications between the hardware

and software in the co-designed system, as well as the low performance of the general purpose

processor, a full implementation was created in hardware [16]. This implementation was written in

HandelC which allowed the hardware implementation to very closely mimic the software algorithm

wherever possible.

This project was first completed without attempting to add any optimizations to the project. The C

source code was directly ported to HandelC, with the appropriate modifications for the hardware

environment. Following this, the design was optimized manually by analyzing the hardware design

and determining where parallel blocks existed. These blocks were then added and tested. Due to the

relatively small size of this project, the optimization phase was relatively short, encompassing

approximately 8 hours of optimizing and testing. In total, 17 parallel block optimizations were found

during the manual optimization of the project.

Following completion of the manually optimized version of the GF(3) hardware design. The un-

optimized hardware design was optimized using the modified hardware design cycle. The un-modified

source was analyzed by the automated parallelism tool, which in this case found all of the manually

identified parallel blocks. Again the tool provided nearly instantaneous feedback, cutting development

time from what was 8 hours when manually identifying parallel blocks to a few seconds for the

automated tool.

29

The result from this case study supports the merit of the modified hardware design cycle for

shortening development time of hardware designs.

5. Conclusion

While the full impact of using the modified hardware design cycle will not be known until the

remaining tools are completed, the case studies that were explored in this paper show that the

modified hardware design cycle as proposed in this paper will have a positive impact on the design

times required to complete an optimized hardware design.

6. Future Work

Much work must still be completed in order to explore fully the proposed hardware design cycle.

This work will be centered on the development of a tool that is capable of analyzing a HandelC source

file and extracting from it an optimized pipelined data path. It is hoped that combining both automatic

parallelism extraction with automated pipeline extraction that a sufficient level of optimization can be

achieved without any direct input from the hardware designer.

In addition to automated parallelism extraction, another key component to the proposed design

cycle is the resource estimation tool. A resource estimation tool will allow the automated parallelism

and pipeline extraction tools to perform iterative optimizations, targeting a specific goal for resource

usage, without the need to run time consuming compilation and synthesis.

Finally, a tool for performing the analysis of requirements as compared to the resource estimates

and a code generator for applying proposed changes automatically will also be needed to remove the

entire optimization phase from the control of the designer. This will allow the optimization phase to

run iteratively multiple times in order to determine the best possible configuration of parallel blocks

and the pipelined data path.

References

[1] Agility Design Solutions, HandelC Reference Manual, Website: www.agilityds.com, accessed

September 2008.

[2] J. C. Libby, F. Gharibian, and K. B. Kent, Automatic Identification of Parallelism in Handel-C,

11th Euromicro Conference on Digital Systems Design, pp. 660-664, September 2008.

[3] C. Brandolese, W. Fornaciari, and F. Salice, An Area Estimation Methodology for FPGA Based

Designs at System-level, Proceedings of Design Automation Conference, 2004.

[4] Rolf Enzler, Tobias Jeger, Didier Cottet, and Gerhard Troster, High-level area and performance

estimation of hardware building blocks on fpgas, In FPL ’00: Proceedings of the The Roadmap to

Reconfigurable Computing, 10th International Workshop on Field Programmable Logic and

Applications, 2000.

[5] D. Kulkarni,W.A. Najjar, R. Rinker, and F.J. Kurdah, Fast Area Estimation to Support Compiler

Optimizations in FPGA-based Reconfigurable Systems, Proceedings IEEE Symposium on Field

Programmable Custom Computing Machines, 2002.

[6] P. Arato, Zoltan A dam Mann, and Andras Orban, Time-Constrained Scheduling of Large

Pipelined Datapaths, Journal of Systems Architecture, 2005.

30

[7] D.J. Mallon, and P.B. Denyer, A New Approach to Pipeline Optimisation, Proceedings of the

European Design Automation Conference, 1990.

[8] Y. Hsu and Yuang-Long Jeang, Pipeline Scheduling Techniques in High-Level Synthesis, ASIC

Conference and Exhibit, 1993.

[9] Hong-Shin Jun and Sun-Young Hwang, Design of a Pipelined Datapath Synthesis System for

Digital Signal Processing, IEEE Transations on Very Large Scale Integration, 1994.

[10] W. Weinhardt and W. Luk, Pipeline Vectorization, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 2001.

[11] N. Park and A.C. Parker, Sehwa: a Software Package for Synthesis of Pipelines from Behavioral

Specifications, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

1998.

[12] J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Compression. IEEE

Transactions on Information Theory, 23(3):337–343, 1977.

[13] J. Daemen and Vincent Rijmen. AES Proposal: Rijndael. Proton World Intl., Erewhon, NC,

March 9, 1999.

[14] G. Lee and F. Ruskey, Listing All Irreducible and Primitive Polynomials in GF(3),. Technical

Report (University of Victoria, Canada), 2006. Unpublished.

[15] K. Kent, B. Iaderoza and M. Serra. Codesign of a Computationally Intensive Problem in GF(3),

International Workshop on Rapid System Prototyping pp. 10-16, May 2007.

[16] J. C. Libby, K. B. Kent, and J. P. Lutes, A Handel-C Implementation of a Computationally

Intensive Problem in GF(3), International Conference on Advances in Electronics and Micro-

electronics, pp. 36-41, October 2008.

31

A Handel-C Implementation of a Computationally Intensive Problem in
GF(3)

Joey C. Libby, Jonathan P. Lutes, and Kenneth B. Kent

Faculty of Computer Science
University of New Brunswick

Fredericton, New Brunswick, Canada
g6x2d@unb.ca, f9dz2@unb.ca, ken@unb.ca

ABSTRACT

Computing the irreducible and primitive polynomials under GF(3) is a computationally intensive task.
A hardware implementation of this algorithm should prove to increase performance, reducing the
time needed to perform the computation. Previous work explored the viability of a co-designed
approach to this problem and this work continues addressing the problem by moving the entire
algorithm into hardware. Handel-C was chosen as the hardware description language for this work
due to its similarities with ANSI C used in the software implementation.

1. INTRODUCTION

The performance of many software systems can be improved by the creation of custom hardware
circuits that are capable of performing some or all of a software systems processing in a native
hardware environment [8,9,10,11]. One major reason that software is implemented in hardware is the
core features that a hardware implementation offers a system designer. The most important of these
features is the inherent parallelism that is found in hardware systems such as Field Programmable
Gate Arrays (FPGA).

The work presented in this paper is a continuation of work started in [1] and centers around the
completion of migrating a software system for the computation of irreducible and primitive
polynomials over GF(3) completely to hardware, and the issues that surrounded the migration. The
original work [1] concentrated only on implementing the computation intensive multmod function of
the GF3 algorithm in hardware.

2. BACKGROUND

This section will discuss the background information that is necessary for understanding this
paper. This discussion includes Handel-C, Galois Fields and the previous work that was completed.

2.1 HANDEL-C

The hardware implementation for this work was implemented in Handel-C [2]. Handel-C is a high

level hardware description language that bears much resemblance to the ANSI C programming
language. While Handel-C is very similar to ANSI C in many respects, there are some major

32

differences between the two languages. Handel-C does not support the entire ANSI C specification.
One of the more important features removed from Handel-C is support for runtime recursion. Handel-
C, along with support for a subset of the ANSI C specification, includes extra support for hardware
descriptions. Included in this extended support are constructs for input and output, communications,
and control flow constructs for controlling the parallelism of a design. Parallelism in a Handel-C
program is defined by using the par{} and seq{} statement blocks. Sequential instructions
wrapped in a par{} statement will be executed parallelly, while statements wrapped in a seq{}
statement will be forced to execute sequentially. Example 1 shows par and seq statements in a
simple Handel-C design.

int 8 a,b,c,d,e,f,g,h;

a = 1; b = 2; c = 3; d = 4;

par {

 d = a + b;

 e = c + d;

}

seq {

 f = d+e;

 g = d*e;

}

Example 1: Example of par and seq Statements

The absence of runtime recursion support in Handel-C proved to be one of the more challenging
aspects of this work. In most cases recursive algorithms can be easily converted to a non-recursive,
loop based algorithm. This would prove to be problematic during the course of this work as several of
the recursive functions written in the C algorithm proved to be resistant to conversion loops.

2.2 GALOIS FIELDS AND THE ALGORITHM

A Galois Field is a finite order denoted by GF(p) where p is a prime or a power of primes [3]. A
Galois Field of order p has only p elements, 0 though p-1. The focus of the algorithm implemented for
this paper is Galois Fields of the order GF(3). These fields are of interest due to their application in
pairing based cryptographic systems [4].

The C algorithm discussed in this paper describes the problem of enumerating all of the primitive
and irreducible polynomials of a given order [5]. Irreducible polynomials are polynomials such that
p(x) in F(x) is called irreducible over F if it is non-constant and cannot be represented as the product
of two or more non-constant polynomials from F(x) [3]. A primitive polynomial is a polynomial such
that F(X), with coefficients in GF(p) = Z/pZ, is a primitive polynomial if it has a root α in GF(pm)
such that is the entire field GF(pm), and moreover, F(X) is the smallest
degree polynomial having α as root [3].

The C algorithm consists of a number of functions that will now be detailed. Where applicable
functions that are recursive are noted.

33

Add: Adds two polynomials under GF(3).
Subtract: Subtracts two polynomials under GF(3).
Mod: Takes the modulus of two polynomials under GF(3).
GCD: Find the greatest common divisor of two polynomials under GF(3) (recursive).
Multmod: Multiplies two polynomials under mod p.
Powmod: Finds the result of one polynomial raise to the power of another polynomial under GF(3).
Minpoly: Finds the minimum polynomial given a necklace.
Gen: Controls execution of the algorithm (recursive).

2.2 THE CO-DESIGNED SOLUTION

The previous implementation of the C algorithm did not attempt to migrate the entire software

algorithm into a hardware system. Instead it was decided to explore a co-designed approach [1] where
only a portion of the software would be translated into a hardware design and this hardware module
would be called from the software running on a general purpose CPU.

After profiling the C algorithm it was decided that the multmod function was the most
computationally intensive function found within the software, thus multmod was chosen as the
function to be implemented in hardware.

The hardware implementation of the multmod algorithm was implemented in Verilog and was
targeted to an Amirix AP1000 [6] development board. This development board was chosen as the
target platform because of its on-chip PowerPC processor that is directly connected to the FPGA
fabric. This feature allowed the software to be executed on a platform that is more tightly coupled
with the FPGA and removed the need to create a PCI bus driver for the work. Figure 1 shows an
overview of the co-designed system and Table 1 shows the benchmarking results for this
implementation.

FPGA

IPIF Wrapper

user-logic

HW multmod

PLB
PowerPC

GF3 SW

ACPU

ACTU

Figure 1: Co-Designed System Overview[1]

While a performance increase was realized by moving to the co-designed system, it was found that

several factors severely limited the overall performance of the system. The slow speed of the
embedded processor running the software portion of the system was one issue that arose. The 200mhz
clock speed of this processor simply was not fast enough to hold pace with the faster general purpose
processors that would normally run the full software implementation [1].

Also a major problem, more so than the slow clock rate of the embedded processor running the
software portion of the system, is the communications between the hardware and the software system.

34

Communications prove to be the Achilles heel of this work, as well as many other co-design works
[7]. The amount of data communications that is necessary between the hardware and the software is so
great that it limits the maximum throughput of the system, which has a huge impact on performance.

The only solution to this problem is to move the entire system into hardware, completely
eliminating the communication channels. This will allow the system to operate at full speed, only
having to access communication channels when retrieving jobs and reporting results.

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6

Degree

Pentium
@1.8GHz

runtime (sec)

Altera
FPGA@66MHz

runtime (sec) %

Xilinx
FPGA@80MHz

runtime (sec) %
2 0.00004 0.00002 37.6 0.00001 24.8
3 0.00018 0.00009 46.6 0.000056 30.7
4 0.00076 0.00034 44.2 0.000228 30.0
5 0.00298 0.00145 48.6 0.001005 33.7
6 0.01495 0.00519 34.7 0.003664 24.5
7 0.04043 0.02005 49.6 0.01439 35.6
8 0.14300 0.07123 49.8 0.051788 36.2
9 0.54600 0.25595 46.9 0.188174 34.5
10 1.89800 0.89412 47.1 0.663513 35.0
11 6.24000 3.08083 49.4 2.302203 36.9
12 22.30800 10.58020 47.4 7.963267 35.7
13 74.78900 35.12896 47.0 26.53804 35.5
14 263.53600 120.09697 45.6 91.323996 34.7
15 888.30300 400.77343 45.1 306.075094 34.5
16 2985.50200 1343.56091 45.0 1049.41517 35.9
17 10192.85900 4424.87400 43.4 n/a n/a
18 32658.34090 14642.10675 44.8 n/a n/a

Table 1: Co-designed Performance Results [1]

3. THE HARDWARE SOLUTION

In order to alleviate the performance degradation caused by communications between the

hardware and software in the co-designed system, as well as the low performance of the general
purpose processor, a full implementation was created in hardware. This implementation was written in
Handel-C which allowed the hardware implementation to very closely mimic the software algorithm
wherever possible.

Much of the ANSI C code that was created for the algorithm was capable of being directly
translated into Handel-C. The code that was directly translated required only minimal modification to
make it compatible with the Handel-C language. Some of these changes included re-definition of
storage elements such as arrays to use static sizes instead of being dynamically allocated. Another
trivial modification that was required in several places was the un-nesting of function calls. Handel-C
does not support the usage of nested function calls of the form foo(bar(x,y),z). This

35

necessitated rewriting some C code to call these functions sequentially using temporary variables to
store the return value of the nested function call.

Once the code was converted to Handel-C syntax all that remained was removing the recursion
that exists in several of the functions in the software. The functions that required modification to
remove recursion were the Gen and GCD functions. Both functions were translated to their loop based
variants. Example 1 shows how the recursive function definition for the GCD was transformed into a
loop.

Poly_GF3 gcd(Poly_GF3 a, Poly_GF3 b){

 if(!b.top && !b.bot) return a;

 return gcd(b, mod(a, b));

}

Example 1 (a): Recursive GCD Definition

Once the recursion was removed from the software functions they were implemented in Handel-C.
Following the implementation in Handel-C, each function required verification to ensure that the
hardware versions were equivalent to their software counterparts.

Poly_GF3 gcdx(Poly_GF3 a, Poly_GF3 b)

{

 Poly_GF3 c,zero;

 zero = {0,0};

 while (a.top || a.bot)

 {

 c = a;

 modx(b,a);

 a = modxResult;

 b = c;

 }

 return b;

}
Example 1 (b): Non Recursive GCD Definition

3.2 HARDWARE VERIFICATION

In order to verify that the hardware functions, especially the functions that were transformed from
recursive to non-recursive, behaved as intended it was necessary to perform some verification tests.
Test cases included boundary cases as well as a large number of randomly generated inputs to the
functions.

36

Verification of the transformed recursive functions was performed in two stages. In the first stage,
the non-recursive algorithm was tested as a software algorithm. Test cases were run against both the
recursive and non-recursive versions of the functions and their return values were compared.
Following running the test cases on both the recursive and non-recursive functions it was deemed that
the recursive and non-recursive functions were both functionally equivalent and so passed
verification.

Verification of the Handel-C hardware code was slightly more involved than testing software code
against software code. The Handel-C hardware code was again tested using the same set of test cases
used for testing the recursive functions. These test cases were first ran in the software version of the
system, recording the results for each test. The same tests were then performed on each hardware
function individually, running the hardware in a simulation environment. The results were also
recorded and compared to those produced by the software for the same tests.

Following verification of the hardware definition it was deemed that the hardware definition is
equivalent to the software algorithm so the work could proceed to benchmarking.

4. Benchmarking

In order to benchmark the hardware design of the GF(3) algorithm, it was necessary to synthesize
the hardware definition to produce a hardware programming file. It was decided that the hardware
would not be programmed onto a physical device for testing, but tests would be performed in a
simulation environment in order to facilitate the gathering of statistics.

The Handel-C definition was first compiled using the Agility Handel-C compiler to produce both
an executable simulation file as well as a synthesizable VHDL description file. The execution
simulation kernel was used to gather timing results for the hardware system and the VHDL
description file was used to gather resource usage and clock speed statistics. Resource usage and clock
speed statistics were gathered by synthesizing the VHDL specification in Xilinx ISE targeting a Virtex
II FPGA (XC2VP100). This FPGA is the same device used for gathering the results for the co-
designed GF(3) algorithm. The results in table 2 show the resource usage and clock frequency for the
design.

Clock Speed Slices Flip flops
68.523 23952 14579

Table 2: Resource Usage and Clock Frequency

Runtimes for the hardware were gathered by running the simulation kernel on different degrees
ranging from 3 to 12. Cycle statistics were gathered for each run, and using the clock rate gathered
from the Xilinx synthesis tool a run time was calculated. These run times are compared to the
runtimes of the software in Table 3. Software run times were gathered on a 2.8 Ghz Pentium 4 with 2
Gb of RAM.

37

N Cycles HW Time (Seconds) SW Time (Seconds)
3 15158 0.000212 0.0127
6 899241 0.0131 0.0178
8 13052272 0.1905 0.1347
10 170959343 2.4949 1.5062
12 2072543280 30.2495 21.8374

Table 3: Runtime Comparison

On inspection of the results, it can be clearly seen that the hardware version of the algorithm, in its
current form, does not surpass the performance of the software algorithm. While the hardware
algorithm does not perform better than the software, the performance gap between the two is
negligible when taking into account the speed grade difference between the hardware running at
68.523 Mhz and the software running on a 2.8 Ghz processor.

Taking this into account it was decided to attempt to improve the hardware design further by
attempting to optimize the design for a hardware environment. Until this point the software had been
converted to a hardware definition almost verbatim, ignoring any of the traditional hardware specific
features such as parallelism.

5. Optimization

The optimization that was chosen for this design was the addition of parallelism to the design. The
software design did not take into account any of the areas of parallelism that might lead to greater
performance for the hardware system. For the purpose of this work, only simple optimizations were
attempted. Individual statements that were capable of parallel execution were grouped into parallel
blocks using the Handel-C par construct.

The parallel blocks were identified using a combination of both an automated parallelism
detection tool [12] as well as manual optimization. This tool allows for the automatic identification of
code that can potentially be executed in parallel. Currently the tool does not modify the Handel-C
source directly and requires intervention from the designer to take advantage of code that is identified
as parallel. The automated tool found a large portion of the available parallel blocks, and then manual
code inspection was used to find more parallel blocks that the tool was unable to identify.

After optimization of the hardware algorithm 17 par blocks of two or more sequential statements
were identified. Parallel execution statements (par{}) were added to the design and the design was
recompiled, again producing both a simulation kernel and a VHDL definition file for hardware
synthesis. Table 4 shows the synthesis results gathered from the Xilinx ISE, again targeting the Virtex
II FPGA (XC2VP100).

Clock Speed Slices Flip flops
68.813 23348 14245

Table 4: Resource Usage and Clock Frequency

Using the clock speed from Table 4 and the statistics gathered from the simulation kernel the
runtime statistics for the hardware algorithm can be calculated. Table 5 shows the new runtimes for

38

the parallel hardware design. Also shown in Table 5 is the percentage reduction of clock cycles
between the original non-parallel design and the parallel design.

N Cycles Percent Reduction HW Time (Secs) SW Time (Secs)
3 8621 43.1% 0.000125 0.0127
6 548189 39.0% 0.0079 0.0178
8 8089562 38.0% 0.1176 0.1347
10 106849548 37.5% 1.5527 1.7392
12 1352768511 34.7% 19.6586 21.8374

Table 5: Parallel Runtime Comparison

Table 4 shows that a small increase, 0.290 Mhz, in clock speed was realized when moving from
the non-parallel to the parallel design. The number of slices and flip flops utilized by the design was
also reduced slightly. Figure 2 shows a comparison of the parallel and non-parallel hardware against
the software implementation.

0

5

10

15

20

25

30

35

3 6 8 10 12

Hardware (Concurrent) Hardware (Sequential) Software
Figure 2: Results Comparison

It can be seen in Figure 2 that the parallel version of the hardware outperforms the software

implementation of the algorithm at all data points gathered for this work. It also appears that the
hardware will continue to outperform the software even when computing orders higher than 12.
Figure 3 illustrates the trend in the percentage difference between the hardware and software
algorithms. This figure clearly shows that the rate of convergence between the hardware and software
run times is slowing and that the hardware will continue to outperform the software.

39

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

Percent Difference
Figure 3: Execution Time Percentage Difference Between Hardware and Software

6. Conclusion

Based on the results gathered after optimizing the Handel-C design for the GF(3) primitive and
irreducible polynomials algorithm it can be said that this work is a success. The entire algorithm was
implemented in hardware and verified to function correctly. The results found in Section 5 highlight
the performance of the hardware system, which outperforms the software on all test points up to order
12. It also appears that, based on Figure 2, the software will continue to outperform the hardware on
higher orders.

7. Future Work

While the work can be considered a success, there is still much work to be done to further improve
the performance of the system. At present only simple parallelism has been identified in the system.
While parallelism between individual statements in a Handel-C program can greatly increase
performance, there can be even greater performance gains from exploiting loop based parallelism or
parallelism between different functional units.

Another optimization that may greatly benefit this work is the identification and implementation
of a pipelined data path. A pipelined data path may increase the throughput of the algorithm by
increasing the amount of work that is done per clock cycle by breaking the algorithm down into
functional units that can operate in parallel much like an assembly line.

References

[1] K. Kent, B. Iaderoza, M. Serra. Codesign of a Computationally Intensive Problem in GF(3),
International Workshop on Rapid System Prototyping 2006.
[2] Agility Design Solutions, Handel-C Reference Manual, Website: www.agilityds.com. Accessed:
May 15, 2008
[3] G. Birkhoff, S. Mac Lane. A Survey of Modern Algebra, 5th ed. New York: Macmillan, 1996.
[4] D. Page and N. P. Smart, "Hardware Implementation of Finite Fields of Characteristic Three".
Proc. of the CHES 2002, 2002.
[5] G. Lee, F. Ruskey, Listing all Irreducible and Primitive Polynomials in GF(3),. Technical Report
(UVic), 2006. Unpublished.

40

[6] AP1000 FPGA Development Board User Guide. User Guide Manual Version 2. AMIRIX Systems
Inc, Halifax, Nova Scotia, Canada. 2005.
[7] M. Moazeni, A. Vahdatpour, K. Gururaj, and M. Sarrafzadeh, Communication Bottleneck in
Hardware-Software Partitioning. In Proceedings of the 16th international ACM/SIGDA Symposium
on Field Programmable Gate Arrays, 2008.
[8] R. Andraka, A Survey of CORDIC Algorithms for FPGA based Computers, 1998 ACM/SIGDA
6th Int. Symp. Field Programmable Gate Arrays.
[9] M. Mylona, D. Holding, and K. Blow, DES Developed in Handel-C, London Communications
Symposium, 2002.
[10] Serra, M., and K. Kent, Using FPGAs to Solve the Hamiltonian Cycle Problem, ISCAS, 2003.
[11] Tobias G. Noll, Application Specific eFPGAs for SoC Platforms, 2005 IEEE VLSI-TSA Int.
Symposium on VLSI Design, Automation and Test. April 2005.
[12] Joseph C. Libby, Kenneth B. Kent, Automatic Identification of Concurrency in Handel-C,
International Symposium on Digital Systems Design, 2008.

41

Ontology-based Unit Test-case Generation

Valeh H. Nasser, Weichang Du, Dawn MacIsaac
Faculty of Computer Science, University of New Brunswick

Fredericton, NB, Canada
{valeh.h, wdu, dmac}@unb.ca

Abstract

In software unit testing, to identify test objectives, various coverage adequacy criteria are sug-
gested. This paper proposes to use reasoning on ontologies to generate unit test objectives. Ontolo-
gies are used for specification of test-oracles and a test-suite, and rules are used for specification
of coverage criteria. Knowledge externalization, in contrast to hardcoding in algorithms, enables
test experts to specify coverage criteria and to enrich test oracles with different pieces of knowl-
edge. Afterwards, the generated test objectives need to be implemented. An architecture for the
system and implementation technologies which are used are described.

1. Introduction

Unit testing is testing the smallest unit of a system under test. It is important because it reduces
the cost of software testing, by discovering errors before they affect a larger portion of the system.
While testing reduces costs by elevating the quality of the unit under test, the testing activity is
costly itself. Hence, the quality of a test suite has a direct relation to the number of errors it
discovers, and an inverse relation with its cost. As a result, specification of an optimum test suite
is crucial. To specify how much testing is enough and what needs to be tested, coverage adequacy
criteria are used [22].

Test cases can be generated from various software artifacts, namely: code, design, and require-
ments [17]. Being at different levels of abstraction, the knowledge that these artifacts provide for
test-case generation is different. This knowledge is used by the test coverage adequacy criteria to
identify what needs to be tested.

While abstraction is used to concentrate on important aspects of the system at hand, poor abstrac-
tion can be a barrier for generating good tests [4]. Poor abstraction of the test-oracle could remove
the knowledge that helps identification of risky test-cases. Benz [4] demonstrates how abstraction
of defect-prone aspects of software can enhance test-case generation by defining system-specific
coverage criteria.

42

One of the common models that is widely used in unit testing is the UML State Machine. Many
methods that use UML state-machines for test-case generation, are based on some coverage ad-
equacy criteria. Coverage adequacy criteria rules are the explicit specification for test selection
and specify what needs to be observed [22]. Zhu et al. [22] categorize coverage adequacy criteria
as structural testing (such as All Transition coverage, All Transition Pair coverage, Full Predicate
coverage [16], Faulty Transition Pair coverage [3], All Content Dependence Relationships [21],
Session based and, 2-Way criteria[18]), fault-based testing (such as plannable test selection crite-
ria [18]) and error based testing (such as Boundary Testing [13]).

Another aspect of test case generation is the method which is used for specification of what needs
to be tested. Some of the automated test case generation methods use explicit specification of test-
cases [11]; some others use rules which are implicit in the algorithms to generate test cases [16].
Another approach for specifying coverage criteria is to provide a language for defining rules for
generating test cases [7]. GOTCHA [7] uses a notation to define partitions of states and transitions
to specify what needs to be covered and what states, sub-paths, and transitions would be ignored.
The drawback of GOTCHA is that the state-space needs to be finite; as a result, for instance,
modeling an unbounded-buffer is not straight-forward.

Besides the specification of the coverage criteria, another challenge to state-machine based test-
ing methods is the generation of test-cases. In the state machine based test case generation, the
test cases are paths from the start state to a final state. There are several approaches to generation
of the test cases. One approach is to use graph traversal algorithms [16, 3, 7]. Another approach
is using model-checking tools for test-case generation [20]. With this approach it is asserted that
there is no path with the required specification in the model. The model checker tries to find the
required path and returns it as output. A third approach is using AI planners to generate test-cases
[18]. AI Planners are used to generate paths to reach identified goals.

The objective of the present work is to improve unit test case generation by generating test
objectives from modifiable test oracles and coverage adequacy criteria specification. Then, for
each test objective, a test case needs to be generated. Different systems have different erroneous
aspects that need to be modeled and coverage criteria based on these abstractions need to be defined
and used [4]. A modifiable test oracle that allows specification of arbitrary test cases, and can be
extended with implementation knowledge, invariants on model elements, distinguished states [19],
and allows adding knowledge about erroneous aspect of the system, is required to increase the
control of the test-expert on the test-case generation. In this paper, an ontology and rule-based
method for unit test case generation is proposed.

The rest of this paper is organized as follows: Section 2 is an overview of the system, Section 3
describes implementation, Section 4 concludes the paper and envisions future works.

2. Ontology-based Unit Test Generation

In this work, knowledge engineering technologies are exploited to externalize the knowledge
that is used in the process of the test-case generation. This knowledge can be modified and ex-
tended for specifying different aspects of test oracles such as implementation knowledge, error-
prone aspects, and other invariants which are needed for generation of arbitrary test-cases. In
this regard, ontologies are proposed to be used for specification of the test-oracle and rules for

43

<Rules>

Coverage Criteria

<Reasoner>

Test Structure

Generator

<Rules>

Test Structure

Assessment Rules

<Reasoner>

Test Structure

Assessment

Planner

Initializer

<Planner>

Test case

Generator

Test Writer

<Ontology>

Test Suite

<Ontology>

State Machine

Model

Test
Structures

Selected
Structures

Planning Domain
and Problem Description

Test
Case Description

<Rules>

Coverage Criteria
<Reasoner>

Test Structure

Generator

<Rules>

Test Structure

Assessment Rules

<Reasoner>

Test Structure

Assessment

Test case

Generator

Test Writer

<Ontology>

Test Suite

<Ontology>

State Machine

Model

Test
Structures

Selected
Structures

Test Case
Description

Test case

Generator

Initializer

Figure 1. System architecture

specification of the coverage adequacy criteria. The ontology and rules can be used to implement
several existing structural coverage criteria, and modifications to them (for instance on their do-
main). Furthermore, they provide extendibility for supporting other user-defined coverage criteria.
With this specification and use of reasoning, test-case structures are specified. Then, test-cases
are generated using a test-case generation method such as AI planners. Furthermore, the proposed
system avoids generating redundant test cases for a test structure by specifying the test suite in an
ontology and reasoning on it to determine whether a test-case with a specific test structure already
exists in the test-suite or not. To the knowledge of the authors, the use of ontology and reasoning
for test-objective generation has not been explored yet.

Figure 1 shows the architecture of the system. First, an ontology representing the state machine
model and rules specifying the coverage criteria are provided as inputs to the Test Structure Gen-
erator process, which uses reasoning to generate test structures. Coverage criteria rules are in the
following form:

test structure :- test structure selection criteria

The test structure selection criteria specify a condition that should hold on some model elements
for them to be a part of structure of a test case. Next, the generated test structures are processed by
the Test Structure Assessment process which uses reasoning to assess whether a given test-structure
already exists in the test-suite or not. If it does not exist, the test structure is accepted, otherwise
it is discarded. Other inputs into this process are the test-suite ontology and assessment rules. If
the given test structure is accepted, then a test case is generated for it and added to the test suite
ontology. Then, the test structure assessment reasoner continues to select another test-structure.

44

sm:Transition

sm:Call

sm:State

sm:FinalState

sm:StartState

sm:Condition

sm:StateMachine

sm:StateVariable

sm:Behaviour

sm:AbstractState

sm:transitions

sm:to

sm:from

sm:vars

sm:guard
sm:to

sm:from

sm:actionsm:event

is-a

is-a is-a

sm:states

Figure 2. Part of the state machine T-Box

An ontology and rules on the ontology form a flexible mechanism for specification of various
coverage criteria. The system empowers the test expert to specify coverage criteria; it enables the
test expert to use knowledge about the system to control the size of the test-suite by specifying
what needs to be tested. It empowers the user to add different pieces of knowledge to the ontology
model of the unit under test and to use this knowledge in the specification of coverage criteria.

3. Implementation

The state machine model and test suite ontologies are represented in OWL [2]. The state ma-
chine model can be converted from XMI [15] to an ontology-based representation; a T-Box ontol-
ogy specifies different concepts and relations in a state machine. An A-Box ontology specifies a
state machine instance by importing the T-Box ontology and instantiating the elements in it. The
Ontology Definition Metamodel (ODM), which is adopted by the OMG, has a section that de-
scribes the UML 2.0 metamodel in OWL. A rough implementation of the ODM is found in [14].
The ODM is not finalized yet and a prototype ontology is used for the purpose of this work. Some
parts of the T-Box of the state machine model and the test-suite ontologies are visualized in Figures
2 and 3 respectively.

The coverage adequacy criteria and test structure assessment rules are written in Positional-
Slotted Language, POSL [5]. For reasoning, the ontologies are mapped to POSL using the map-
pings suggested by Grosof et al. [8]. OO jDrew [1] is then used for reasoning. For instance,
coverage criteria rule for All Transition Pair Coverage (ATP) [16] is shown below:

ATP: coverage([immediate],[?t2,?t1]) :- transition(?t1),
transition(?t2), notEqual(?t1,?t2), from(?t1,?state), to(?t2,?state).

The head of the rule specifies a test structure, which is implemented using two lists: the list of

45

Test

StepCall

VariableValue

hasStep

Value

StateVariable

nextStep
hasCall

outcome
arg

variable

value

Figure 3. Part of the test suite T-Box

test structure predicates and the list of their arguments. The body of the rule denotes the conditions,
which should hold on the model elements for them to be a part of the test structure.

The All Transition Pair coverage criteria only depends on the specification of the structure of a
state machine; that is the specification of the standard UML state machine elements. Additional
knowledge can be added to the UML state machine ontology, and be referred to in coverage criteria
rules.

After a test structure is generated, it is assessed whether a test case conforming the structure
already exists in the generated test suite. For this purpose, the partially generated test suite is
represented in an ontology, and for every generated test structure, an structure assessment rule is
generated. Part of the test suite ontology T-Box is visualized in Figure 3. The test suite ontology
is converted to POSL and OO jDREW is used for reasoning. An example of a test structure
assessment rule for the immediate test structure is given below:

Test Structure: [immediate],[t1,t2]
Assessment Rule: exist([immediate],[t1,t2]):-
test(?t), hasStep(?t,t1), hasStep(?t,t2), nextStep(t1,t2).

After the test structures are generated, we plan to use AI-Planning method for generation of
test-cases from the generated test-structures. For each selected test structure, a planner named
Metric-FF [10] is run to generate test-cases. It uses the PDDL 2.1 [6] and supports numeric fluents.
It may be difficult to utilize this approach with systems with more complex data structures, such
as arrays, because of the low expressiveness power of the PDDL. Before the planner is run, the
PDDL domain and problem descriptions need to be generated. The PDDL Domain and Problem
objects are initialized using the model ontology. For the domain description, a state is mapped to
a PDDL type, a transition is mapped to an action, and a transition guard is mapped to an actions
precondition. An active predicate indicates the active state and is added to the action’s precondition
and effect. Initially the start state is active. A transition action is mapped to the effect of an action to
change the value of the state variables. The state varibles are implemented using additional fluents
and predicates. In the problem description, an object for each PDDL type which correponds to the
states is defined. The initial and goal conditions map to active predicate of first state and final state.
Then for each test-structure, the PDDL Domain and Problem objects are cloned, and predicates

46

are added to them to implement the test structure. Next, the domain and problem descriptions are
edited and written to a file; then, Metric-FF is executed, and the generated plan is written back to
the ontology illustrated in Figure 3.

4. Concluding Remarks

In this work, it is proposed that rules on the model ontology can serve as a notation for specifying
test coverage criteria and reasoning can be used for generating test objectives. Several components
of the system are highly modifiable: the test case generation algorithm can be changed; the cov-
erage adequacy criteria and assessment rules can be modified. The knowledge that is used by the
coverage criteria can be added to the model ontology. The tester can control and adapt the test
suite based on their knowledge about the system. This system can be extended using reverse engi-
neering to populate the interesting implementation knowledge such as definition use relationships
from the code automatically. The high level of modifiability of the system is due to externalization
of knowledge and use of general purpose reasoning algorithms.

The test-case generation needs to be implemented using an AI planner to use mutation analysis
[12] for testing the effectiveness of the test suite. Because of limitations of the modelling power
of AI planners in modeling complex state variables and and changes to them, the domain of the
systems that can be tested is limited to the ones that only have integers and booleans. Model-
checkers such as [9] are more mature in simulating the behaviour of the system and needs to be
exploited for practical use of the system.

References

[1] M. Ball. OO jDREW: Design and Implementation of a Reasoning Engine for the Semantic Web.
Technical report, Technical report, Faculty of Computer Science, University of New Brunswick, 2005.

[2] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinness, P. Patel-Schneider, L. Stein,
et al. OWL Web Ontology Language Reference. W3C Recommendation, 10:2006–01, 2004.

[3] F. Belli and A. Hollmann. Test generation and minimization with” basic” statecharts. In Proceedings
of the 2008 ACM symposium on Applied computing, pages 718–723. ACM New York, NY, USA, 2008.

[4] S. Benz. Combining test case generation for component and integration testing. In Proceedings of the
3rd international workshop on Advances in model-based testing, pages 23–33. ACM Press New York,
NY, USA, 2007.

[5] H. Boley. POSL: An Integrated Positional-Slotted Language for Semantic Web Knowledge.
http://www.ruleml.org/submission/ruleml-shortation.html, 2004.

[6] M. Fox and D. Long. PDDL2. 1: An extension to PDDL for expressing temporal planning domains.
Journal of Artificial Intelligence Research, 20(2003):61–124, 2003.

[7] G. Friedman, A. Hartman, K. Nagin, and T. Shiran. Projected state machine coverage for software
testing. In Proceedings of the 2002 ACM SIGSOFT international symposium on Software testing and
analysis, pages 134–143. ACM New York, NY, USA, 2002.

[8] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: combining logic
programs with description logic. In WWW ’03: Proceedings of the 12th international conference on
World Wide Web, pages 48–57. ACM, 2003.

47

[9] G. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley Profes-
sional, 2004.

[10] J. Homann. The Metric-FF Planning System: Translating ”Ignoring Delete Lists” to Numeric State
Variables. Journal of Artificial Intelligence Research, 20:291–341, 2003.

[11] A. Howe, A. Mayrhauser, and R. Mraz. Test Case Generation as an AI Planning Problem. Automated
Software Engineering, 4(1):77–106, 1997.

[12] S. Kim, J. Clark, and J. McDermid. The Rigorous Generation of Java Mutation Operators Using
HAZOP. In Proceedings of the 12th International Conference on Software and Systems Engineering
and their Applications, 1999.

[13] N. Kosmatov, B. Legeard, F. Peureux, and M. Utting. Boundary Coverage Criteria for Test Generation
from Formal Models. In Proceedings of the 15th International Symposium on Software Reliability
Engineering, pages 139–150. IEEE Computer Society Washington, DC, USA, 2004.

[14] E. Lehtihet. http://www.tssg.org/public/ontologies/omg/uml/2004/UML2-Super-MDL-041007.owl,
May 2005.

[15] Object Management Group. XML Metadata Interchange (XMI) specification.
http://www.omg.org/technology/documents/formal/xmi.htm, 2007.

[16] J. Offutt and A. Abdurazik. Generating tests from UML specifications. In UML’99 - The Unified
Modeling Language. Beyond the Standard. Second International Conference, Fort Collins, CO, USA,
volume 1723, pages 416–429. Springer, 1999.

[17] T. Ostrand and M. Balcer. The category-partition method for specifying and generating fuctional tests.
Communications of the ACM, 31(6):676–686, 1988.

[18] A. Paradkar. Plannable Test Selection Criteria for FSMs Extracted From Operational Specifications.
In Proceedings of the 15th International Symposium on Software Reliability Engineering, pages 173–
184, 2004.

[19] A. Paradkar. A quest for appropriate software fault models: Case studies on fault detection effective-
ness of model-based test generation techniques. Information and Software Technology, 48(10):949–
959, 2006.

[20] S. Rayadurgam and M. Heimdahl. Coverage based test-case generation using model checkers. In
Engineering of Computer Based Systems, 2001. ECBS 2001. Proceedings. Eighth Annual IEEE Inter-
national Conference and Workshop on the, pages 83–91, 2001.

[21] Y. Wu, M. Chen, and J. Offutt. UML-Based Integration Testing for Component-Based Software.
In Cots-Based Software Systems: Second International Conference, ICCBSS 2003, Ottawa, Canada,
pages 251–260. Springer, 2003.

[22] H. Zhu, P. Hall, and J. May. Software unit test coverage and adequacy. ACM Computing Surveys
(CSUR), 29(4):366–427, 1997.

48

Knowledge Base Validation under Closed-World Semantics

Cheng Lu
Faculty of Computer Science

Abstract

It is now possible and in some cases desirable to use a Knowledge Base (KB) to store busi-
ness data. However, the common validation operation applied to KB does not always perform
as expected from the business perspective. Knowledge Base typically is supposed to repre-
sent an “open-world”. For the traditional database, the data domain is always “closed”. This
difference is often referred to as “open-world” vs. “closed-world”. Most common Description
Logic (DL) reasoners follow the open-world standard when performing reasoning tasks on
KBs. The results from these reasoning tasks do not always satisfy the users who view the
KB with a database perspective which typically is closed-world. In this paper, we propose
an approach validating a KB under the closed-world semantics. We design and implement
a DL reasoner prototype which is capable of dealing with both open-world and closed-world
reasoning tasks. Reasoning with a KB that is partially closed using the ‘K’ operator is also
discussed in this paper. Traditional database users will have a flexible way to express that
some parts of the KB are open and some are closed by using K-operator reasoning services.

1 Introduction

Validation is a very important part of database management. For the integrity of a business
database, invalid data needs to be either removed from the database or updated with necessary
information. The most common database, the relational database, has a method to add constraints
for a single data attribute or an entire relation tuple. But a relational database schema does not
have the capability to describe some high-level abstract property constraints for business data.
A Knowledge Base (KB) overcomes this shortcoming by allowing data entity constraints to be
associated directly with the data.

Using a business KB to replace the business database will make it easier to add validation
constraints for data. Using a business KB also brings benefit for database developers because
they can use one general DL ontology reasoner to validate any business KB instead of writing a
validation program for each specific business database. It is also not an easy job for developers
to integrate two databases constructed in different languages. By using KB technology, they can
describe the business information in the ontology form and make further integration easier.

However, the KB represented in the ontology form brings in some new problems in terms of
validation. We illustrate this with two examples. One shows how ordinary integrity constraints
can be violated and the other shows how number constraints, known as cardinality constraints,
can be violated.

49

For the first example, assume in a ‘Bank Account’ Knowledge Base, we have this information
about accounts and customers described as follows:

• Account is a subset of things that have an owner who is a Customer.

• ‘#326974’ is an Account ID.

• ‘#275482’ is an Account ID.

• ‘ID41981’ is a Customer ID.

• the owner of Account ‘#326974’ is Customer ‘ID41981’.

This KB information would be written in DL form as:

Account v ∃hasOwner.Customer
Account(#326974)
Account(#275482)
Customer(ID41981)
hasOwner(#326974, ID41981)

The example above shows that this KB is not consistent with what we have in a traditional
database system. For individual ‘#275482’, it has been declared as member of class ‘Account’,
but we cannot find its corresponding ‘hasOwner’ property statement in the KB. It seems that this
KB is not complete since necessary information is missing. But surprisingly, typical DL reasoner
will not inform the user that some necessary information is missing. This is because this KB is
not inconsistent under the open-world view. More information could be revealed later that would
satisfy the constraint. Thus the KB is not unsatisfiable; it is consistent.

Here is another example of a ‘Car Registration’ Knowledge Base, the information about the car
related documents are:

• Registration Document is a subset of things which have at least 2 associated documents.

• ‘R13821’ is a Registration Document.

• ‘DL3224’ is a Driver License Document.

• ‘CI45772’ is a Car Insurance Document.

• ‘R13821’ has Driver License Document ‘DL3224’ associated with it.

This KB information would be written in DL form as:

RegistrationDoc v ≥2 hasAssociateDoc
RegistrationDoc(R13821)
DriverLicenceDoc(DL3224)
CarInsureDoc(CI45772)

50

hasAssociateDoc(R13821, DL3224)

This example is very similar to the first example, we know that registration document ‘R13821’
is associated with driver license ‘DL3224’, but we are not sure if ‘R13821’ associated with car in-
surance ‘CI45772’. Although we think there is lack of one more ‘associate’ property statement for
registration document ‘R13821’, once again, the DL reasoner will not complain about this as incon-
sistency in the KB. It seems that the min cardinality constraint defined for class ‘RegistrationDoc’
has not been validated at all.

The two problems arise because of the open characteristic of KB. Some information is not
explicitly written in the KB, but this does not necessarily mean it does not exist. And this piece
of information about the KB may be revealed in future. Thus the KB as a whole is still consistent
under the open-world view of KB theory. Although KB provides us a convenient way to describe
property constraints on entities, its open-world characteristic make it more difficult to validate. For
business application users, they usually prefer that the KB is totally closed during the validation
process. And they want the min cardinality constraint and the existential quantifier constraint
to be validated under the closed-world view. But current DL reasoners such as Pellet [7] and
Fact++ [1] are designed for open-world reasoning. These reasoners use the open-world view to
process the KB consistency check.

This common problem for current DL reasoners motivates us to research how to validate and
reason with a KB under closed-world semantics. We build a DL reasoner prototype which can
query the KB and draw conclusions based on the closed-world view. Moreover, we extend the
reasoning function to focus on reasoning with concrete data1 explicitly stored in the KB, not the
inferred data represented by the DL quantifier constraints. We also use the K-operator to extend
the query language so the user can express where open-world view and where closed-world view
is to be applied for a KB. These improvements would satisfy the needs for many business KB
applications.

The rest of the paper is structured as follows. In section 2, we explain how current instantiation
check service work under the open-world semantics, and then introduce how we adapt it into a
closed-world reasoning service. Section 3 describes current progress of our research. Section 4
shows the related work done by other research groups on the K-operator syntax and semantics,
and section 5 concludes.

2 Methodology

The most simple and basic validation function for a KB, is the instantiation query. It checks
whether a specific instance, which is mentioned in the KB domain, instantiates a specific concept
description or not. For each instantiation query, there is one situation for which open-world
reasoning would answer “unknown”. This is caused by the incomplete information in the KB
ABox. The ABox information of a KB does not describe a particular state of that KB. It actually
constrains the possible worlds that the KB describes. So there exist infinite possible worlds(models)
which can be interpreted from the KB ABox. We customize the KB in two steps to achieve the

1concrete data represents concrete instantiation assertions in “a∈A” form and role assertions in “(a, b):R” form.

51

closed-world instantiation query. In the first step, we eliminate all the “unknown” answers by
assuming the information is complete in the KB. If the reasoner cannot conclude “yes” or “no” in
a certain situation, then we make the reasoner answer ‘no’. After this setup, a KB’s response to a
DL instantiation query based on the corresponding KB information is shown in Table 1.

1 ? a∈C
Yes Every possible model of KB contains assertion a∈C
No otherwise
2 ? a∈∃R.C

Yes Every possible model of KB contains either assertion set {(a,
b):R, b∈C } or assertion a∈∃R.C

No otherwise
3 ? a∈∀R.C

Yes Every possible model of KB contains a∈∀R.C
No otherwise
4 ? a∈≥nR

Yes Every possible model of KB contains 1)at least n assertions
of (a, bi):R, and each bi is distinct individual, or 2)assertion
a∈≥nR

No otherwise
5 ? a∈≤nR

Yes Every possible model of KB contains assertion a∈≤nR
No otherwise

Table 1: Modified Instantiation Checking for a DL KB

However, the performance of this modified instantiation query does not totally satisfy the re-
quirements for business KB validations. There are two major problems:

1) We can conclude from no.2 - no.5 of Table 1 that if a quantifier assertion appears in every
possible world of a KB, plus it is consistent with KB ABox description under open-world semantics,
then the instantiation query that is identical to this quantifier assertion would always receive the
answer “Yes”. The first step KB customization does not effectively validate the concrete data
stored in a KB.

2)There is no way to receive ‘yes’ answers from instantiation queries corresponding to value
restriction (?a∈∀R.C) and max cardinality(?a∈≤nR) based on concrete data in a KB under the
open-world view. When generating models from a KB ABox, new facts can be revealed later as
long as they do not contradict with facts that exist in the KB ABox. Therefore, we could always
find some models interpreted from KB ABox where the value restriction or the max cardinality
is violated by concrete facts unless the quantifier assertion itself exists in every model as 1) has
described.

In order to solve the two problems above, we further customize the KB in the second step.
We limit the number of possible models interpreted from the KB ABox by setting additional
KB assumptions. Then we only need to consider about finite models interpreted from the KB
ABox instead of infinite possible models for traditional open-world KB. The three additional KB

52

assumptions are the unique-name assumption, the domain-closure assumption, and the KB-closure
assumption.

Unique-name assumption
The unique-name assumption is a basic assumption for database system. It says that two dis-
tinct constants (either atomic values or objects) necessarily designate two different objects in the
universe. In Description Logic with the unique-name assumption, different names always refer
to different objects in the KB domain. The Web Ontology Language (OWL) does not make
this assumption as a default assumption, but provides a constructor to explicitly state that two
individuals are different.

Domain-closure assumption
The database system is also based on another assumption called the domain-closure assumption.
The domain-closure assumption suggests that “there are no other objects in the universe than
those designated by constants of the database.” [8].

KB-closure assumption
In order to solve the problem of “value restriction quantifier” validation, we need to introduce in a
new assumption, which we call it the KB-closure assumption. The KB-closure assumption says in a
KB model, we do not use the ALCN quantifiers including role existence quantifier assertion, value
restriction quantifier assertion, min cardinality quantifier assertion and max cardinality quantifier
assertion to represent knowledge any more. All the knowledge we know about a model must be
represented by concrete instantiation assertions in “a∈A” form and role assertions “(a, b):R” form.

By applying the unique-name assumption, the domain-closure assumption and the KB-closure
assumption to the KB, we now have a closed-world instantiation checking standard which meets
the needs for common business KB validation purpose. The detail is shown in Table 2.

On the basis of the closed-world instantiation checking, we propose a theory for the closed-world
KB consistency validation. It is the extension from the original consistency theory for the KB.
The original standard for a consistent KB under open-world semantics is:

“There is at least one model that can be generated from the KB ABox.”

Our proposed standard for a consistent KB under the closed-world semantics is:

“There is at least one model that can be generated from the KB ABox and all the quantifier
assertions in this model are satisfied by concrete data that exist in the same model.”

In this way, the validation within that model can get rid of the interference from uncertain
data(e.g. a∈BtC). Users still have the freedom to express uncertain data in the KB. When the
user provides only the concrete data and validation requirements, the KB ABox will generate at
most one model. Our new theory for KB closed-world consistency validation in this situation will
perform exactly like validation in a single-model database.

3 Results

The open-world reasoning services have been implemented for our reasoner prototype include
concept satisfiability check, concept subsumption check, concept equivalence check, KB consistency

53

? a∈C
Yes Every model contains assertion a∈C
No otherwise

? a∈∃R.C
Yes Every model contains assertion set {(a, b):R, b∈C }
No otherwise

? a∈∀R.C
Yes For every (a, b):R role assertion in each model, there exists

b∈C assertion
No otherwise

? a∈≥nR
Yes Every model contains at least n assertions of (a, bi):R, and

each bi is distinct individual
No otherwise

? a∈≤nR
Yes Every model contains at most n assertions of (a, bi):R, and

each bi is distinct individual
No otherwise

Table 2: Closed-world Instantiation Checking for a Business KB

check and individual instantiation check. The closed-world reasoning services we have implemented
for our reasoner prototype is closed-world instantiation check.

Some research groups suggest using an epistemic operator called ‘K’ operator to extend the
traditional ALC language [5, 3, 6, 9]. The new extended attributive language is called ALCK.
‘K’ is read as “is known to be held (by the knowledge base)”. We also have researched on the
K-operator for our closed-world KB validation purpose. We have implemented two K-operator
reasoning services for our reasoner prototype:

K-satisfiability

K-satisfiability checks if there exists at least one individual in KB ABox which is known to
instantiate a specific concept description. For example, assume that we want to check the satisfia-
bility of (KC). We need to look into the ABox to find a individual ‘i’, and the fact “i∈C” is known
to be held KB. Only when this individual ‘i’ is exist, KC is satisfied. Compared to the open-world
satisfiability checking, the reasoning of K-satisfiability needs the ABox information to be involved
into the reasoning process, while for open-world satisfiability checking, the ABox information is
not necessary.

K-instantiation

K-operator allows partially closing specific concepts and roles in instantiation checking while
leaving other part of the KB open. For example, assume that we want to have an instantiation
checking on (a∈KCuB). For the part a∈KC, we need to check whether “a∈C” is known to be held
by the KB with concept C closed; for the part a∈B, we need to check if “a∈B” is held by the KB
with concept B open. Only when both parts return “Yes” answers, the K-instantiation checking

54

will answer “Yes”. Compared to the open-world instantiation checking, K-instantiation checking
implements local closed-world reasoning to close some specific part of the KB but keeps the other
part of KB in the open-world.

4 Related Work

The syntax and semantics of ALCK has been introduced in DL by F. M. Donini, D. Nardi and
their research group. [4] The proposed syntax of ALCK is showed below: (where C and D denote
full concepts, A denotes primitive concept(concepts which cannot be reduced further to other
concepts combination forms), R denotes a role and p denotes a primitive role(roles which cannot
be transformed to other combination forms of other roles).

C, D −→ > | ⊥ | A | C | CuD | CtD | ∃R.C | ∀R.C | KC

R −→ p | Kp

The semantics of ALCK can be defined by a interpretation pair (I, W). I = (∆I , .I) is a first
order interpretation with interpretation domain ∆I and interpretation function .I . There exist
infinite worlds(models) which can be interpreted from the ABox information. W is an abstract set
of all these possible worlds or models.

The following equations showed the semantics of how the ALCK syntax elements are interpreted
in First Order Logic.

>I,W = ∆I

⊥I,W = ∅
AI,W = AI,W ⊆ ∆I

pI,W = pI,W ⊆ ∆I × ∆I

(¬C)I,W = ∆I\CI,W

(CuD)I,W = CI,W∩DI,W

(CtD)I,W = CI,W∪DI,W

(∃R.C)I,W = {a ∈ ∆I |∃b.(a,b)∈RI,W ∧ b ∈ CI,W}
(∀R.C)I = {a ∈ ∆I |∀b.(a,b)∈RI,W −→ b ∈ CI,W}

(KC)I,W =
⋂

J∈W CJ,W

(KR)I,W =
⋂

J∈W pJ,W

As described in [2], primitive concepts are interpreted as subsets of the KB domain ∆I , and
primitive roles are interpreted as individual pairs from ∆Ix∆I . The intersect, union, existential and
value restriction quantifier are interpreted as set operations on domain ∆I . The epistemic concept
KC is interpreted as the set of all individuals which belong to the concept C in all the possible
models. “In other words, these objects are definitely known to be members of C. Similarly, an
epistemic role Kp is interpreted as the pairs of individuals that belong to the role p in all possible
worlds” [6]

55

5 Concluding Remarks

In this paper, we propose an approach using closed-world semantics to perform instantiation check-
ing on a KB. For a business KB, the concrete facts which are transformed from database format
will be examined by the closed-world instantiation check, to see if they satisfy the validation re-
quirements represented by DL quantifier assertions. The closed-world instantiation check function
will lead us to the next stage of the research, to design a global KB consistency check function
under closed-world semantics. The research on K-operator is targeting on performing closed-world
validation on a partial KB, while keep the rest part of the KB in an open-world setting. This
characteristic will be useful for some specific validation scenario of a business KB in future.

References

[1] Fact++ DL reasoner. 2008. Avaliable at: http://owl.man.ac.uk/.

[2] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider. Description
Logic Hand book. Cambridge University Press, New York, NY, 2nd edition, 2007.

[3] D. Calvanese, G. D. Giacomo, and D. Lembo. Epistemic first-order queries over description logic
knowledge bases. Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano,
Italy , 2006.

[4] F. M. Donini, M. Lenzerini, D. Nardi, W. Nutt, and A. Schaerf. An epistemic operator for
description logics. Artificial Intelligence, 100(1-2):225–274, 1998.

[5] S. Grimm and B. Motik. Closed world reasoning in the semantic web through epistemic
operators. FZI Research Center for Information Technologies at the University of Karlsruhe,
Karlsruhe, Germany, 2005.

[6] S. Grimm, B. Motik, and C. Preist. Matching semantic service descriptions with local closed-
world reasoning. presented at: European Semantic Web Conference, pages pp.575–589, 2006.

[7] P. Group. Pellet DL reasoner. 2008. Avaliable at: http://pellet.owldl.com/.

[8] U. Hustadt. Do we need the closed-world assumption in knowledge representation? Working
Notes of the KI’94 Workshop: Reasoning about Structured Objects: Knowledge Representation
Meets Databases (KRDB’94), pages Document D–94–11, 24–26, 1994.

[9] Y. Katz and B. Parsia. Towards a nonmonotonic extension to owl. presented at: OWL:
Experiences and Directions(OWLED2005), 2005.

56

Fusing Multiple Sensors to Detect Network

Traffic Anomalies - A Control Theoretic Model

Wei Lu, Mahsa Kiani, Mahbod Tavallaee and Ali A. Ghorbani

Information Security Center of Excellence

Faculty of Computer Science,

University of New Brunswick, Fredericton, NB E3B 5A3, Canada

Intrusion detection has been extensively studied in the last two decades. However, most existing intrusion

detection systems (IDSs) detect a limited number of attack types and report a huge number of false alarms. To

improve their performance, a hybrid approach has been proposed recently. A big challenge for constructing such

a multi-sensor based IDS is how to make accurate inferences that minimize the number of false alerts and

maximize the detection accuracy. We address this issue and propose a control theoretic model which fuses

results of two anomaly detection methods, namely non-parametric CUmulative SUM (CUSUM) and EM based

clustering using a trust-reputation matrix. The experimental evaluation with the 1999 DARPA intrusion

detection evaluation dataset shows that our model can achieve a better performance than the two individual

detection sensors as well as the union of the two individual sensors.

I. INTRODUCTION

With the enormous growth of computer networks and the huge increase in the number of applications running

on top of it, network security is becoming an important issue. As shown in [1], all computer systems suffer from

security vulnerabilities which are both technically difficult and economically costly to be solved by the

manufacturers. Therefore, the role of Intrusion Detection Systems (IDSs), as special-purpose devices to detect

network anomalies and attacks, is becoming more important.

Generally, IDSs use two fundamental approaches including misuse detection (or the signature based

approach) and anomaly detection (or the behaviour based approach). In misuse detection the search for evidence

of attacks is based on knowledge accumulated from known attacks. This knowledge is represented by attacks'

signatures, which are patterns or sets of rules that can uniquely identify an attack. The pros and cons of misuse

detection are completely discussed in [2]. The advantages of signature-based approaches are their good accuracy,

low false alarm rate and the fact that they give enough information about the type of detected attacks to the

system administrator On the other hand, drawbacks include the difficulty of gathering the required information

on the known attacks and keeping it up-to-date with new vulnerabilities.

In anomaly detection, models of normal data are built based on normal traffic, and then the deviation from

the normal model will be considered as an attack or anomaly. The main advantage of this approach over misuse

detection is that it can detect attempts to exploit new and unforeseen vulnerabilities. It can also help detect

"abuse of privileges" attacks that do not actually involve exploiting any security vulnerability. However, this

approach has its own shortcomings. The main reported problem is a high false alarm rate, which is caused by

two kinds of problems. The first one is the lack of a training dataset that covers all the legitimate areas, and the

other one is that abnormal behavior is not always an indicator of intrusions. It can happen as a result of factors

such as policy changes or the offering of new services by a site.

In order to overcome these challenges and keep the advantages of misuse detection, some researchers have

proposed the idea of hybrid detection. There are currently two ways to achieve this goal, one is sequence based

57

and the other is parallel based. Sequence based hybrid IDSs apply anomaly detection (or misuse detection) first

and misuse detection (or anomaly detection) second [3,4]. Combing the advantages of both misuse and anomaly

detection, hybrid IDSs achieve a better performance. However, the sequence based approaches might not

provide full coverage for the attack types due to the filtering of malicious (normal) traffic. Also the sequence

process will prolong the detection and make real-time detection impossible. In contrast, parallel based hybrid

IDSs apply multiple detectors in parallel and make an intrusion decision based on multiple output sources,

which provide a wide coverage for intrusions and have the potential to detect previously unknown attacks [5].

One of the biggest challenges for parallel based IDSs is how to make accurate inferences that minimize the

number of false alarms and maximize the detection accuracy.

In this paper we propose a control theoretic model in order to address this issue. As illustrated in Figure 1,

the general architecture of our detection scheme consists of two major components, namely feature analysis and

multi-sensor based IDS. During feature analysis, we define and generate fifteen features to characterize the

network traffic behavior, in which we expect the more the number of features, the more accurate the entire

network will be characterized. These proposed features are then input to the multi-sensor based IDS, in which

many intrusion detectors are fused according to a trust-reputation matrix. The final intrusion decision is given

through a fuzzy attacking probability output by the inference model.

The major contributions of this paper include: (1) a formalized model based on dynamic programming for

achieving the minimum number of false alarms through self-learning and adaptive capability, (2) a hybrid

intrusion detection strategy based on a trust-reputation matrix, and (3) a completed flow based analysis for the

1999 DARPA network traffic dataset using the proposed multi-sensor based IDS.

The rest of the paper is organized as follows. Section II presents the formalized model for our multi-sensor

based IDS. Section III introduces the fifteen flow-based features and explains the reasons for selecting them.

Section IV provides an overview of the two existing anomaly detection approaches, namely the CUSUM

algorithm and the Expectation-Maximization (EM) based clustering algorithm. Section V presents the complete

network anomalies analysis for the 1999 DARPA intrusion detection evaluation dataset by using our intrusion

inference model. Section 6 makes some concluding remarks and discusses future work.

II. FORMALIZED MODEL FOR MULTI-SENSOR IDS

Figure 2 illustrates the formalized model for the multi-sensor IDS. In particular, the meaning of the notations

appearing in Figure 2 is explained as follows:

� Feature vector is denoted by
1 2(, ...)nF f f f , in which fi (i = 1,2,…,n) refers to features that might be based

on flows, packets, host logs, firewall/alert events, traffic behaviour, biometrics, to name a few. In this case,

the feature vector denotes the 15-dimensional flow based features.

� Detection sensors are denoted by S (S1, S2, S3, …,Sm) that include m different detection algorithms for

intrusion detection.

� Notation TRW refers to the Trust-Reputation Weight matrix and it measures the credibility degree of

decisions. In particular, TRWSjfi is the trust-reputation weight for feature fi in Sj, where i = 1,2,…,n and j =

1,2,…,m. The higher the value of TRWSjfi, the more credible its decision by feature fi and Sj is. The settings

of TRWSjfi are based on the historical detection records. For each separate feature fi, we have:

1

1
j i

m

S f

j

TRW
=

=∑

58

�
i jf Sp denotes the attacking probability generated by feature fi and detection sensor Sj. It measures the

anomalous degree of current networks by feature fi and detection sensor Sj, where i = 1,2,…,n and j =

1,2,…,m. The higher the value of
i jf Sp , the more anomalous the current network. Notation

if
p is the

attacking probability correlated by all detection sensors Sj (j = 1,2,…,m) with specific features fi, and we

have:

1

1, 2,...,
i i j j i

m

f f S S f

j

p p TRW i n
=

= × =∑

�
anomalous

p denotes the final attacking probability generated by MAADS, and we have:

1
j j

n

anomalous S S

j

p p TRW
=

= ×∑

� Notation FACount is the number of false alerts obtained from historical alerting reports. Security officers

verify every alert reported by and make after-event decisions on true or false.

� Based on FACount, penalty factor and reward factor are used to adjust the value of RWfiSj and RWSj in

order to minimize FACount.

We conduct a theoretical analysis to prove that the proposed multi-sensor system can always reach the

optimum through a dynamic programming technique. For more information about the proof refer to [6].

III. FEATURE ANALYSIS

The major goal of feature analysis is to select and extract robust network features that have the potential to

discriminate anomalous behaviors from normal network activities. Since most current network intrusion

detection systems use network flow data (e.g. netflow, sflow, ipfix) as their information sources, we focus on

features in terms of flows.

The following five basic metrics are used to measure the entire network's behavior: (1) FlowCount: a flow

consists of a group of packets going from a specific source to a specific destination over a time period, (2)

PacketCount: the average number of packets in a flow over a time interval. Most attacks happen with an

increased packet count, (3) ByteCount: the average number of bytes in a flow over a time interval, (4)

PacketSize: the average number of bytes per packet over a time interval, and (5) FlowBehavior: the ratio

between FlowCount and PacketSize. It measures the anomalousness of flow behavior.

Based on the above five metrics, we define a set of features to describe entire traffic behavior on networks.

Let F denote the feature space of network flows, a 15-dimensional feature vector f∈F can be represented

as 1 2 15{ , ,..., }f f f , where the meaning of each feature is explained in Table I.

Empirical observations with the 1999 DARPA network traffic flow logs show that network traffic volumes

can be characterized and discriminated through these features. For more information about the results of the

empirical observation refer to [6].

IV. OVERVIEW OF TWO DETECTION SENSORS

In this section, we briefly introduce the two network intrusion detection techniques, namely the non-parametric

Cumulative SUM (CUSUM) algorithm and the Expectation-Maximization (EM) based clustering algorithm.

More information about the CUSUM and EM clustering algorithms can be found in [7] and [8], respectively.

59

A. Non-parametric CUSUM Algorithm

The CUSUM algorithm is an approach to detect a change of the mean value of a stochastic process. A basic

assumption for the non-parametric CUSUM algorithm is that the mean value of the random sequence is negative

during normal conditions, and becomes positive when a change occurs. Consequently, a transformation of {Xn}

into a new sequence {Zn} is necessary, which is given by Zn = Xn − β, where β is a constant. The parameter β is

set according to network normal conditions and it guarantees that the majority of values of the sequence Zn are

negative during normal conditions and becomes positive when a change occurs. In practice, a recursive

non-parametric CUSUM algorithm is used to detect anomalies online. The recursive version is presented in [7,9]

and can be defined using a new sequence {Yn}:

1

0

()

0

n n n
Y Y X

Y

β +

−
 = + −


=
 where

, 0

0,

+
>

= 


x x
x

otherwise

where β is set in a fashion that the values of Xn - β remain slightly negative during normal operations. As a result,

increases in the metric are expected to be detected, once the values are bigger than β. A long time period of

values larger than β will lead to further increases in the CUSUM function until a possible alarm level is reached.

A large value of Yn is a strong indication of an attack. Based on this, we define an attacking probability p to

measure the anomalous degree of the initial sequence Xn:

,

1.0,


< ×

= ×



n

n

Y
Y

p

otherw ise

α β
α β

where p is the attacking probability for sequence Xn; α is an adjusting parameter, which is used to amplify the

value of β and is set as constant 1, 2,…; Yn is the CUSUM value of sequence Xn.

B. EM based Clustering Algorithm

The EM algorithm is widely used to estimate the parameters of a Gaussian Mixture Model (GMM). GMM is

based on the assumption that the data to be clustered are drawn from one of several Gaussian distributions. It is

suggested that Gaussian mixture distributions can approximate any distribution up to an arbitrary accuracy, as

long as a sufficient number of components are used. Consequently, the entire data collection is seen as a mixture

of several Gaussian distributions, and their corresponding probability density functions can be expressed as a

weighted finite sum of Gaussian components with different parameters and mixing proportions. The conditional

probability in EM describes the likelihood that data points approximate a specified Gaussian component. The

greater the value of conditional probability for a data point belonging to a specified Gaussian component, the

more accurate the approximation is. As a result, data points are assigned to the corresponding Gaussian

components according to their conditional probabilities. However, in some cases, there exist some data points

whose conditional probability of belonging to any component of a GMM is very low or close to zero. These data

are naturally seen as the outliers or noisy data. All the outlier data will be deleted or considered as anomalies

during anomaly detection, and their attacking probability is set to 1.0. Algorithm I illustrates a detailed EM

based clustering algorithm in which Cm stands for the clustering results.

In order to apply the EM based clustering technique for detecting network anomalies, we make two basic

assumptions: (1) the input data points are composed of two clusters, namely anomalous cluster and normal

cluster; (2) the size of the anomalous cluster is always smaller than the size of the normal cluster. Consequently,

we can easily label the anomalous cluster according to the size of each cluster. The attack probability for each

data point is equal to the conditional probability of the corresponding data point belonging to the anomalous

cluster, which is defined as follows:

60

1
(|)−=

r anomalous n
p p C x

where xn is the data point; Canomalous is the anomalous cluster;
1
(|)−r anomalous n

p C x is the conditional probability

of xn belonging to anomalous cluster Canomalous.

V. PERFORMANCE EVALUATION

We evaluate our multi-sensor IDS with the full 1999 DARPA intrusion detection dataset and identify the

intrusions based on each specific day. Since most current existing network intrusion detection systems use

network flow data (e.g. network, sflow, ipfix, etc.) as their information sources, we convert all the raw

TCPDUMP packet data into flow based traffic data by using the public network traffic analysis tools, similar to

the 1999 KDDCUP dataset [10] in which the 1998 DAPRA intrusion detection dataset [11] has been converted

into a connection based dataset. Although the 1998 and 1999 DARPA dataset was criticized in [12] due to the

methodology for simulating an actual network environment, they are a widely used and acceptable benchmark

for current intrusion detection research.

During the evaluation, the results are summarized and analyzed in three different categories, namely how

many attack instances are detected by each feature and all features’ correlation, how many attack types are

detected by each feature and all features’ correlation and how many attack instances are detected for each attack

type. We do not use the traditional Receiver Operating Characteristic (ROC) curve to evaluate our approach and

analyze the tradeoff between the false positive rates and detection rates because ROC curves are often

misleading and incomplete [13]. Compared to most evaluations with the 1999 DARPA dataset, our evaluation

covers all types of attacks and all days' network traffic and thus, we consider our evaluation to be a

comprehensive. Next, we will analyze and discuss the intrusion detection results we obtain. More information

about the 1999 DAPRA/MIT Lincoln intrusion detection dataset and the method for converting the TCPDUMP

packet logs into network flow based logs can be found in [14] and [15], respectively.

A. Creating Trust-Reputation Matrix

The historical reputation matrix is set up according to the detection rate (DR) and the false positive rate (FPR)

for each detector over a long time history. The ratio of DR to FPR is used to measure the performance of each

detector. We evaluate individually the two detectors with the 15 features and 9 days DARPA testing data on

week 4 and week 5. The evaluation results are summarized and analyzed in three different categories described

above.

For the detector using the EM based clustering technique, Table II illustrates the average value of DR, FPR

and the ratio of DR to FPR for each feature over those 9 days. For the detector using the CUSUM algorithm,

Table III illustrates the average value of DR, FPR and the ratio of DR to FPR for each feature. For more

information about detection results for features F1 to F15 over 9 days of evaluation using EM based clustering

and CUSUM see [6]. Based on the ratio of DR to FPR in Tables II and III, we normalize them and use the

normalized values as elements of the historical reputation matrix, which is given as follows:

0.78 0.81 0.95 0.7 0.74 0.34 0.51 0.58 0.73 0.84 0.0 0.76 0.54 0.65 0.72

0.22 0.19 0.05 0.3 0.26 0.66 0.49 0.42 0.27 0.16 0.0 0.24 0.46 0.35 0.28
×

 
= 
 

s fHRW

The matrix has 2 rows and 15 columns. Row 1 means the historical reputation weight for the detector using

the EM based clustering algorithm and row 2 stands for the historical reputation weight for the CUSUM based

detector. Columns 1 to 15 stand for the features F1 to F15.

61

B. Intrusion Detection Results for the Multi-Sensor IDS

The calculation of the attacking probability for the multi-sensor IDS has been discussed in Section 2 in theory.

In our evaluation, we substitute real numbers into the generalized model and discuss how to calculate the

attacking probability in the system. We have known that there are 15 features and 2 detectors included in the

system, and thus n is equal to 15; m is equal to 2. We define S1 as the detector using the EM based clustering

algorithm and S2 as the CUSUM based detector.
j iS FTRW stands for the trust-reputation matrix described in

Section 2, where i = 1,2,…,15 and j = 1,2.
i jF Sp is the attacking probability generated by feature Fi and

detection agent Sj and
iF

p is the attacking probability of the hybrid detection system with specific features Fi.

Based on these, we have:
2

1

1,2,...,15
=

= × =∑i i j j iF F S S F

j

p p HRW i

We evaluated the detection system with one day's DARPA testing data (i.e. W4D1). There are 14 attack

types on W4D1 and a total of 8 attack types are detected by our hybrid system. The DR in terms of attack types

is 57.14%. The number of attack types detected by using the CUSUM technique is only 5 and the number is 8

with using the EM based clustering only. More detailed detection results regarding the hybrid detection system

see [6]. Using S1 and S2 to denote the EM based clustering detection sensor and the CUSUM detection sensor,

we know the number of correct alerts generated by S1 is 161; the number of correct alerts generated by S2 is 73;

and the number of correct alerts generated by the hybrid detection system is 105. The intersection set of correct

alerts reported by both S1 and S2 is 69 and the union set of correct alerts reported by S1 and S2 is 166. In order to

evaluate and compare the performance of the hybrid system with the two individual detectors, we define two

performance metrics, namely degree of agreement and hybrid goodness, which can be calculated as follows:

sec
eg =

Number of Correct Alerts in

Inter tion Set of Both Detectors
D ree of Agreement

Number of Correct Alerts in

Union Set of Both Detectors sec

=

Number of Correct Alerts

Detected By Hybrid System
Hybrid Goodness

Number of Correct Alerts in

Inter tion Set of Both Detectors

The degree of agreement for the two individual detectors is 0.42. Denoting the intersection of S1 and S2 as S,

the number of correct alerts in the intersection set between S and the hybrid system is 49. That is, the hybrid

detector reports 49 alerts which are in the same set with the 69 alerts agreed upon by both detectors, and thus,

the hybrid goodness of the system in this case is 0.71, which measures the degree of the goodness of the hybrid

detection system.

The evaluation results show that the number of correct alerts generated by the hybrid system is 105, which

is smaller than the 161 correct alerts generated by the detector using the EM based clustering algorithm. The

number of false alerts reported by the hybrid system, however, is 189, which is much smaller than the 799 false

alerts by the clustering based detector. That means even though the number of correct alerts reported by the

clustering based detector is 1.5 times the number of correct alerts reported by the hybrid detection system, the

number of false alerts reported by hybrid is largely reduced, which is only 24% of the total number of false

alerts reported by the clustering based detector. From this perspective, we can conclude that our hybrid detection

system can achieve an acceptable detection rate but at the same time largely reduce the number of false alerts.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a formalized model for a multi-sensor intrusion detection system. In order to

characterize the behaviour of the network flows, we present a 15-dimensional feature vector. The empirical

observation results with the 1999 DARPA intrusion detection dataset show that the proposed features have the

62

potential to distinguish anomalous activities from normal network behaviours. A complete traffic analysis for

the 1999 DARPA intrusion detection dataset is conducted using the multi-sensor IDS with two well-known

intrusion detection sensors. Based on the achieved evaluation results, we conclude that even though the number

of correct alerts reported by the hybrid system is a little bit smaller than the number reported by one of the

individual detectors, the hybrid system reduces the number of false alerts largely. Moreover, in this work two

new metrics have been proposed to evaluate the performance of the hybrid system, namely degree of agreement

and hybrid goodness.

Future work mainly consists of using more detectors in our system, developing more evaluation metrics to

judge the fusion performance and improving the hybrid system through dynamic programming techniques.

REFERENCES

[1] C. E. LANDWEHR, A. R. BULL, J. P. MCDERMOTT, AND W. S. CHOI. A TAXONOMY OF COMPUTER PROGRAM

SECURITY FLAWS. ACM COMPUT. SURV., 26(3):211-254, 1994.

[2] H. DEBAR, M. DACIER, AND A. WESPI. TOWARDS A TAXONOMY OF INTRUSION-DETECTION SYSTEMS.

COMPUTER NETWORKS: SPECIAL ISSUE ON COMPUTER NETWORK SECURITY, 31(9):805-822, APRIL 1999.

[3] J. ZHANG AND M. ZULKERNINE, A HYBRID NETWORK INTRUSION DETECTION TECHNIQUE USING RANDOM

FORESTS. IN PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND

SECURITY, PP: 262-269, VIENNA UNIVERSITY OF TECHNOLOGY, 2006.

[4] M. QIN, K. HWANG, M. CAI AND Y. CHEN, HYBRID INTRUSION DETECTION WITH WEIGHTED SIGNATURE

GENERATION OVER ANOMALOUS INTERNET EPISODES, IEEE TRANSACTIONS ON DEPENDABLE AND SECURE

COMPUTING, 4 (1), PP: 41-55.

[5] T. SHON AND J. MOON, A HYBRID MACHINE LEARNING APPROACH TO NETWORK ANOMALY DETECTION,

INTERNATIONAL JOURNAL ON INFORMATION SCIENCES, VOL. 177, ISSUE 18, PP: 3799-3821, ELSEVIER SCIENCE

INC. NEW YORK, 2007.

[6] HTTP://NSL.CS.UNB.CA/WEI/HYBRID.HTM.

[7] H. N. WANG, D. L. ZHANG, AND K. G. HIN. DETECTING SYN FLOODING ATTACKS. IN PROCEEDINGS OF IEEE

INFOCOM 2002, JUNE 2002.

[8] W. LU AND I. TRAORE. UNSUPERVISED ANOMALY DETECTION USING AN EVOLUTIONARY EXTENSION OF

K-MEANS ALGORITHM. INTERNATIONAL JOURNAL ON INFORMATION AND COMPUTER SECURITY, VOLUME 2,

NUMBER 2, PP. 107-139 (33 PAGES), INDERSCIENCE PUBLISHER, MAY 2008.

[9] T. PENG, C. LECKIE, AND K. RAMAMOHANARAO. DETECTING DISTRIBUTED DENIAL OF SERVICE ATTACKS

USING SOURCE IP ADDRESS MONITORING. DRAFT, NOVEMBER 2002.

[10] HTTP://KDD.ICS.UCI.EDU/DATABASES/KDDCUP99/KDDCUP99.HTML.KDDCUP

[11] HTTP://WWW.LL.MIT.EDU/IST/IDEVAL/DATA/1998/1998_DATA_INDEX.HTML

[12] M.V. MAHONEY AND P.K. CHAN, AN ANALYSIS OF THE 1999 DARPA/LINCOLN LABORATORY EVALUATION

DATA FOR NETWORK ANOMALY DETECTION. IN PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON

RECENT ADVANCES IN INTRUSION DETECTION, PP: 220-237, PITTSBURGH, PA, USA, 2003.

[13] J.E. GAFFNEY, J.W. ULVILA, EVALUATION OF INTRUSION DETECTORS: A DECISION THEORY APPROACH. IN

PROCEEDING OF IEEE SYMPOSIUM ON SECURITY AND PRIVACY, PP: 50-61, 2001.

[14] HTTP://WWW.LL.MIT.EDU/IST/IDEVAL/DATA/1999/1999_DATA_INDEX.HTML

[15] W. LU AND A. A. GHORBANI. NETWORK ANOMALY DETECTION BASED ON WAVELET ANALYSIS. EURASIP

JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2008, IN PRESS.

63

TABLE II

PERFORMANCE OF ALL 15 FEATURES OVER 9 DAYS EVALUATION

Features

Average

DR (%)

Average

FPR (%)

Ratio of Avg. DR to

Avg. FPR

F1 39.83 81.84 0.487
F2 52.22 84.04 0.621
F3 32.25 84.14 0.383
F4 12.0 89.03 0.135
F5 51.8 85.74 0.604
F6 32.25 84.17 0.383
F7 3.2 82.92 0.0386
F8 49.26 84.19 0.585
F9 32.25 84.14 0.383
F10 6.81 86.71 0.0785
F11 0.0 0.0 0.0
F12 32.25 84.17 0.383
F13 8.57 94.59 0.0906
F14 52.41 83.59 0.627
F15 32.25 84.17 0.383

TABLE III

PERFORMANCE OF ALL 15 FEATURES OVER 9 DAYS EVALUATION

Features

Average

DR (%)

Average

FPR (%)

Ratio of Avg. DR to

Avg. FPR

F1 11.04 80.43 0.137
F2 12.96 85.94 0.15
F3 1.6325 87.33 0.02
F4 4.9 84.44 0.058
F5 17.84 82.42 0.217
F6 7.23 95.5 0.757
F7 2.94 79.61 0.037
F8 33.57 78.18 0.429
F9 11.5 81.1 0.142
F10 1.4 94.87 0.015
F11 0.7 95.24 0.0074
F12 10.8 87.26 0.124
F13 6.015 77.18 0.078
F14 27.73 81.85 0.339
F15 12.87 86.12 0.15

APPENDIX: FIGURES AND TABLES

Fig. 1. General architecture of the detection framework

Feature Analysis Raw Packets

Features based on Flows

Multi-Sensor based IDS

Sensor 2

Sensor 1

Flows with Attacking Probabilities

Sensor m

ALGORITHM I

EM BASED CLUSTERING ALGORITHM

Function EMCA (data) returns

 clusters Cm and posterior probability (|)r np i x

 =mC φ , 1 ≤ ≤m k , k is the number of clusters

 Call EM (data);

 For 1 ≤ ≤m k , 1 ≤ ≤n N

 If (
1 1(|) max((|))− −=r n r np m x p m x)

 Then assign
nx to

m
C

 Return mC , 1,2...,=m k

TABLE I

LIST OF FEATURES

Features Description

f1 Number of TCP Flows per Minute
f2 Number of UDP Flows per Minute
f3 Number of ICMP Flows per Minute
f4 Average Number of TCP Packets per Flow

over 1 Minute
f5 Average Number of UDP Packets per

Flow over 1 Minute
f6 Average Number of ICMP Packets per

Flow over 1 Minute
f7 Average Number of Bytes per TCP Flow

over 1 Minute
f8 Average Number of Bytes per UDP

Flow over 1 Minute
f9 Average Number of Bytes per ICMP Flow

over 1 Minute
f10 Average Number of Bytes per TCP Packet

over 1 Minute
f11 Average Number of Bytes per UDP Packet

over 1 Minute
f12 Average Number of Bytes per ICMP

Packet over 1 Minute
f13 Ratio of Number of flows to Bytes per

Packet (TCP) over 1 Minute
f14 Ratio of Number of flows to Bytes per

Packet (UDP) over 1 Minute
f15 Ratio of Number of flows to Bytes per

Packet (ICMP) over 1 Minute

mS
p

S
p

S
p

n mf S
p

f S
p

1f S
p

nf S
p

2 2f S
p

p
p

2 1f S
p

1 1f S
p

S

1

f

f

f

TRW

TRW

TRW

ΣS TR

S

2

f

f

f

TRW

TRW

TRW

ΣS TR

S

m

f

f

f

TRWf

TRWf

TRWf

ΣS TR

Σ FACo

p

TRWfi

TRWSk

Penalty

Factor

Fig. 2 Formalized model for multi-sensor IDS

64

An Incremental Self-Improvement Hybrid

Intrusion Detection System

Mahbod Tavallaee, Wei Lu, and Ali A. Ghorbani

Faculty of Computer Science, University of New Brunswick

{m.tavallaee,wlu,ghorbani}@unb.ca

Abstract
Combining misuse and anomaly detection methods into a hybrid system has been recently proposed in

order to improve intrusion detection capability. However, there exist two important issues that make this task

cumbersome. First, all anomaly-based methods need a completely labeled and up-to-date training set which is

very costly and time-consuming to create if not impossible. Second, getting different detection technologies to

interoperate effectively and efficiently becomes a big challenge for building an operational hybrid intrusion

detection system (IDS).

In this paper , we propose a new hybrid network intrusion detection framework, combining the well known
Snort as a signature based detector and a decision tree algorithm (C4.5) as an anomaly detector. Based on the

idea of incremental learning, we provide our hybrid system with an automatically labeled training set. This

training set will be improved and updated gradually; therefore, probable changes in the traffic behavior will

not affect our system. In addition, taking advantage of a fast classifier (C4.5) and simple flow-based features,
our hybrid detector can perform real-time with an acceptable delay similar to Snort. Experimental

evaluations on real traffic from a large-scale WiFi ISP network show that our approach successfully detects a

large portion of the attacks missed by Snort while also reducing the false alarm rate.

1. Introduction

Intrusion detection has been extensively studied since the seminal work by Anderson [1].

Traditionally, intrusion detection techniques are classified into two categories: misuse (signature-

based) detection and anomaly detection. Misuse detection is based on the assumption that most

attacks leave a set of signatures in the stream of network packets or in audit trails, and thus

attacks are detectable if these signatures can be identified by analyzing the audit trails or network

traffic behaviors. However, misuse detection is strictly limited to the known attacks and

detecting new attacks is one of the biggest challenges faced by misuse detection.

To address the weakness of misuse detection, the concept of anomaly detection was formalized

in the seminal report of Denning [2]. In this approach models of normal data are build based on

the normal traffic, and then the deviation from the normal model will be considered as an attack

or anomaly. The main advantage of this approach over misuse detection is that it can detect

attempts to exploit new and unforeseen vulnerabilities. It also can help detect “abuse of

privileges” types of attacks that do not actually involve exploiting any security vulnerability.

However, this approach has its own shortcomings. The main reported problem is high false alarm

rate which is caused by two kinds of problems. The first one is the lack of a training data set that

covers all the legitimate areas, and the other one is that abnormal behavior is not always an

indicator of intrusions. It can happen as a result of factors such as policy changes or offering of

new services by a site.

In order to overcome these challenges, and keep the advantages of misuse detection, some

researchers have proposed the idea of hybrid detection. This way, the system will achieve the

advantage of misuse detection to have a high detection rate on known attacks as well as the

ability of anomaly detectors in detecting unknown attacks. According to this fusion approach,
65

current hybrid IDSs can be divided into two categories: 1) sequence-based in which either

anomaly detection or misuse detection is applied first, and the other one is applied next; 2)

parallel-based in which multiple detectors are applied in parallel, and the final decision is made

based on multiple output sources.

Although with respect to the characteristics of signature-based and anomaly-based methods,

the fusion of these two approaches should theoretically provide a high-performance IDS, there

are still two important issues that make this task cumbersome. First, all anomaly-based methods

need a completely labeled and up-to-date training set which is very costly and time-consuming to

create if not impossible. Second, getting different detection technologies to interoperate

effectively and efficiently becomes a big challenge for building an operational hybrid intrusion

detection system.

To overcome the aforementioned problems, we have combined a signature-based detector

(Snort [5]) and an anomaly-base detector (C4.5 [3]) in parallel with the idea of incremental

learning. Toward this aim we have defined learning time intervals, e.g. 1 day, at the end of which

the anomaly-based detector will be trained by the latest training set. This training set is the flows

labeled by the hybrid detector in the previous interval. In the first interval which we do not have

any training set, we only rely on the labels from Snort. These labels will be used as a training set

for the anomaly-based detector in the next time interval. During the second time interval raw

packets are given to both Snort to do the labeling and Flow Aggregator to provide the required

features for C4.5 Classifier. The flow-based features will then go through the decision tree based

classifier to be labeled. Finally, we use a fusing algorithm to combine the results from Snort and

the Classifier. This result will be both reported to the admin and used as a training set in the next

time interval.

Although at first we only rely on the Snort labels which are not very accurate to be used as a

training set, fusion of Snort and the C4.5 classifier will provide a more reliable training set as we

go forward. This way we hope to gain a pretty reliable system after running the system for a

while. The other advantage of our method is that the training set will be changed as the traffic

behavior changes and keeps itself up-to-date. Applying a decision tree based classifier which has

a very low classification time on the one hand, and applying flow-based features computed on-

line on the other hand, makes our system completely real-time.

The major contributions of this paper include: 1) a novel method to provide the system with an

automatically labeled training set; 2) defining some time intervals to change the training set and

replacing it with the latest one, and keeping the training set up-to-date; 3) providing a general

framework to combine signature-based and anomaly-based detectors together in order to achieve

the advantages of anomaly detectors while keeping all the benefits of misuse detection; 4) taking

advantage of a fast classifier and simple flow-based features to keep the hybrid detector real-time

with an acceptable delay similar to Snort.

The rest of the paper is organized as follows. Our proposed detection scheme will be explained

in Section 2. Section 3 presents the experimental evaluation of our approach and discusses the

obtained results. Finally, in Section 4, we draw conclusions.

2. The Proposed Detection Scheme

As mentioned in Section 1 with respect to the characteristics of signature-based and anomaly-

based methods, the fusion of these two approaches effectively should theoretically provide a

66

high-performance IDS. However, there are two important issues that make this task cumbersome.

First, all anomaly-based methods need a completely labeled and up-to-date training set which is

very costly and time-consuming to create if not impossible. Second, getting different detection

technologies to interoperate effectively and efficiently becomes a big challenge for building an

operational hybrid intrusion detection system (IDS)

In the rest of this section we briefly explain the anomaly-based and signature-based detectors

we have applied, and then will provide our solutions to solve the aforementioned problems.

A. Anomaly-based Detector

As the first step to have an effective anomaly detector, we should extract robust network

features that have the potential to discriminate anomalous behaviors from normal network

activities. Since most current network intrusion detection systems use network flow data (e.g.

netflow, sflow, ipfix) as their information sources, we focus on features generated based on these

flows. The name and description of the applied features are listed in Table 1.

In order to create the flows and extract the features we used a commercial network security

management tool called QRadar [4]. In addition to provide statistical features this product has

the functionality of detecting the type of applications in each flow. Running some experiments

we found this feature quite helpful to increase the performance of the system. In addition, this

feature is calculated on-line and does not impose any delays to the system.

Having extracted the features, the next step is to find a very efficient classifier. Evaluating

famous classifiers based on detection rate, false alarm rate, classification time, and learning time,

we ended up with the C4.5 decision tree algorithm [3].

Table 1. Applied flow-based features

SrcIP source IP address

DstIP destination IP address

SrcPort source port number

DstPort destination port number

SrcBytes number of bytes in the flow sent from the source to the destination

DstBytes number of bytes in the flow sent from the destination to the source

SrcPackets number of packets in the flow sent from the source to the destination

DstPackets number of packets in the flow sent from the destination to the source

SrcBytes/DstBytes the ratio of “SrcBytes” to “DstBytes”

SrcPackets/DstPackets the ratio of “SrcPackets” to “DstPackets”

SrcBytes/SrcPackets the ratio of “SrcBytes” to “SrcPackets”

DstBytes/DstPackets the ratio of “DstBytes” to “DstPackets”

Protocol Name Value of “protocol” field in the IP packet

Application Name Name of the application detected by an “application discovery” module

B. Signature-based Detector

As our signature-based detector we chose Snort [5] because of its popularity and availability to

researchers. However, our proposed hybrid detection scheme is completely independent from

Snort, and any other signature-based detector can be used instead.

As mentioned earlier, our anomaly-based detector works on flows. However, Snort is designed

to work on packets. To make our detectors consistent, we matched snort alerts with the existing

flows based on the source IP, source port, destination IP, destination port, and time stamp. Since

67

the flows and snort alerts are generated by different devices, we were not very strict with the

time stamps and considered a deviation of up to 5 seconds acceptable.

C. The proposed hybrid detector

The most important issues that current anomaly detectors deal with are firstly to prepare a

labeled data set, and secondly to keep that data set up-to-date. To solve these problems we have

proposed to apply the idea of incremental learning. To meet this goal we have defined learning

time intervals, e.g. 1 day, at the end of which the anomaly-based detector will be trained by the

latest training set. This training set is the flows labeled by the hybrid detector in the previous

interval. Figure 1 illustrates the structure of our hybrid detector. In the first interval which we do

not have any training set we only rely on the labels from Snort. These labels will be used as a

training set for the anomaly-based detector in the next time interval. During the second time

interval, raw packets are given to both Snort to do the labeling and Flow Aggregator to provide

the required features for C4.5 Classifier. The flow-based features will then go through the

decision tree based classifier to be labeled. Finally, we use a fusing algorithm to combine the

results from Snort and the Classifier. This result will be both reported to the administrator and

used as a training set in the next time interval.

D. Fusing algorithm

Let ��
� ��� and ��

� ��� be the labels assigned to the 	th flow of time interval � by Snort and the

classifier respectively;
 denote normal traffic, and ��

 denote an attack of type � in time interval

�. Using Algorithm 1 the hybrid detector will specify the final label of each flow.

As illustrated in Algorithm 1, when the flow is labeled as normal by both Snort and classifier,

it will be labeled as normal by the hybrid detector. Similarly, if the flow is labeled as an attack

by both detectors, it will be labeled as an attack by the hybrid system. However, since signature

based method are more accurate in providing the detail of the attacks compared to anomaly

+

Raw Packets

Raw Packets

Flow

Aggregator

C4.5

Classifier

Raw Packets

Snort

Snort

Hybrid
Detector

Flow

Aggregator

C4.5

Classifier

Snort

Hybrid
Detector

First Learning Interval

Second Learning Interval

Third Learning Interval

Figure 1. General structure of the hybrid detector

+

68

detectors, we choose the attack type detected by Snort. In addition, if the flow is labeled as

normal by Snort but as an attack by the classifier, we will label it as an attack since the

classifier’s knowledge is based on previous detection of Snort, and it is very probable that Snort

misses some signatures in the flows. The most complicated situation happens when Snort labels

a flow as an attack, while the classifier labels it as normal. In this situation, we look for that

specific attack type in the list of attacks existing in the previous training set. If we can find that

attack type in the list, it means that the classifier has already learned it; therefore the hybrid

detector relies on the classifier and labels that flow as normal. Otherwise, if we cannot find that

attack type in the attack list, it shows the classifier does not know anything about it. So, the

hybrid system trusts Snort and labels that flow as an attack. This attack type will be learned by

the classifier in the next time interval and makes later detection of this kind of attack more

accurate in the future.

Alogorithm 1. Fusing Algorithm

Function HybridDetector

 Inputs:

 Collection of flows labeled by Snort ��
� ��� , 	 � 1, 2, … ,�

 Collection of flows labeled by Classifier ��
� ��� , 	 � 1, 2,… ,�

 List of existing attack in the previous time interval

 ��� � 1� � ���

��, ��

��, … , ��

���

 Initialization:

 	 � 0

 Repeat: 	 � 	 � 1

 If ��
� ��� �
 � ! ��

� ��� �
 Then ����� �

 Else If ��
� ��� �
 � ! ��

� ��� � ��

 Then ����� � ��

 Else If ��
� ��� � ��

 � ! ��
� �
 Then

 If ��

 " ��� � 1� Then ����� �
 Else ����� � ��

 Else If ��
� ��� � ��

 � ! ��
� ��� � �#

 Then ����� � ��

 Until: 	 � �

Return ����

3. Experiments

A. Applied data sets

To analyze the performance of our method, we used real traffic from a large-scale WiFi ISP

network, Fred-eZone [6], over three consecutive days. Fred-eZone is a free WiFi service which

is provided by City of Fredericton, New Brunswick, Canada and covers downtown business

districts, City parks, local arenas, business hotels, etc. Table 2 summarizes the workload of the

Fred-eZone network.

Table 2. Workload of Fred-eZone WiFi network over 1 day

SrcIP DstIP Flows Packets Bytes

1055K 1228K 30783K 994M 500G

In order to find the real labels of flows (anomalous or normal) in the second data set, we relied

on a commercial product, QRadar [4]. This product includes a complete set of information from

69

the packets, flows, network characteristics, etc. as an input to their rule engine, and then based on

some expert knowledge decides if a flow is anomalous or normal. Although the labels provided

by this product are not fully accurate, since it brings a lot of information into account for its final

decision, it is much more accurate and reliable than Snort.

B. Experimental Result

To perform our experiment on real traffic from the Fred-eZone data set we chose three

consecutive days of traffic. We then divided the traffic into three one-day time intervals. Figures

2 and 3 compare the detection rate and false positive rate of the Snort with our proposed hybrid

system, respectively.

As it is illustrated in Figures 2 and 3, our proposed hybrid detector has improved the

performance of Snort in terms of both detection rate and false alarm rate.

Figure 2. Comparison of Snort and the Hybrid Detector based on the detection rate

Figure 3. Comparison of Snort and the Hybrid Detector based on the false alarm rate

4. Conclusion

In this paper, we proposed a new hybrid network intrusion detection framework, combining

the well known Snort as a signature based detector and a decision tree algorithm (C4.5) as an

45.83%
51.33%

60.74%

71.54%

85.62%

0%

20%

40%

60%

80%

100%

Time Interval 1 Time Interval 2 Time Interval 3

D
e

te
ct

io
n

R

a
te

Snort

Hybrid Detector

16.14% 13.21% 11.09%12.39%
7.81%

0%

20%

40%

60%

80%

100%

Time Interval 1 Time Interval 2 Time Interval 3

F
a

ls
e

 A
la

rm
 R

a
te

Snort

Hybrid Detector

70

anomaly detector. Based on the idea of incremental learning we provided our hybrid system with

an automatically labeled training set. This training set will be improved and updated gradually;

therefore, probable changes in the traffic behavior will not affect our system. In addition, taking

advantage of a fast classifier (C4.5) and simple features, our hybrid detector can perform real-

time with an acceptable delay similar to Snort. Experimental evaluations on real traffic from a

large-scale WiFi ISP network showed that our approach successfully detected a large portion of

the attacks missed by Snort while reducing the false alarm rate. Although in this work we have

used Snort as a misuse detector and C4.5 classifier as an anomaly detector, our approach is not

restricted to these detectors and can be used as a general framework to combine any misuse and

anomaly detection systems.

References

[1] J. P. Anderson. Computer Security Threat Monitoring and Surveillance. Technical Report,

James P. Anderson Co., Fort Washington, Pennsylvania, 1999.

[2] D. E. Denning. An Intrusion Detection Model. IEEE Transactions on Software Engineering,

2: 222-232, 1987.

[3] J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993.

[4] Q1 Labs network security management company, Available on: http://www.q1labs.com,
September, 2008.

[5] Snort: The open source network intrusion detection system. Available on:

http://www.snort.org/, August, 2008.

[6] Fred-eZone WiFi Service, Available on: http://www.fred-ezone.com, September, 2008.

71

Expressing Vague Knowledge in the
Fuzzy Description Logic fALCHIN

Jidi Zhao, Harold Boley†, and Weichang Du
Faculty of Computer Science,

University of New Brunswick, Fredericton, Canada
{Judy.Zhao, wdu} AT unb.ca

† Institute for Information Technology, National Research Council of Canada
Fredericton, NB, E3B 9W4 Canada

Harold.Boley AT nrc.gc.ca

March 26, 2009

Abstract

Uncertainty is an intrinsic feature of our knowledge, which is also reflected in the
World Wide World and the Semantic Web. Motivated by Web applications, this paper
introduces an expressive fuzzy description logic that extends classical description logics
to many-valued logics. The syntax to represent imprecise or vague knowledge and the
semantics to interpret complex concept descriptions and subsummptions are addressed
in detail. This proposed fuzzy description logic, fALCHIN , extends the expressive-
ness of the well know description logic ALC by fuzzy concepts, fuzzy inverse roles, and
fuzzy role inclusion axioms, as well as fuzzy at-most/at least number restrictions.

1 Introduction

The Semantic Web initiative aims at creating an extension of the current World Wide Web
by developing logic-based standards and technologies that enable machines to understand the
information on the web, so that they can support richer knowledge discovery and automate
the performance of various tasks for human beings [3].

A key research direction for the Semantic Web is to handle uncertainty, as evidenced by
Fuzzy RuleML [4] and W3C’s Uncertainty Reasoning for the World Wide Web Incubator
Group [8]. Typical Description Logics (DL) are limited to dealing with crisp, well defined
concepts. They cannot express vague or uncertain knowledge. However, uncertainty is an
intrinsic feature of real-world knowledge. Many concepts needed in knowledge modeling lack
well-defined boundaries or, precisely defined criteria of relationships with other concepts.
For example, the concepts of young man, tall, and cold.

72

To overcome this deficiency, this paper proposed an extension to Description Logics based
on Fuzzy Logic. The rest of this paper is organized as follows. Section 2 briefly introduces
the syntax and semantics of expressive Description Logics. Section 3 reviews Fuzzy Logic
and Fuzzy Set Theory. Section 4 presents the syntax and semantics of an expressive fuzzy
description logic, as well as the components of a knowledge base using such this knowledge
representation formalism. Section 5 reviews some related work in uncertainty management in
Description Logic. Finally, in Section 6 we summarize our main results and give an outlook
on future research.

2 Preliminaries

We briefly introduce Description Logics in the current section. Their syntax and semantics
in terms of classical First Order Logic are also presented. As a notational convention, we
will use a, b, x for individuals, A for atomic concepts, C and D for concept descriptions, R
and P for atomic roles.

Description Logics (DL) [2][1] are a family of logic-based knowledge representation for-
malisms designed to represent and reason about the knowledge of a concrete domain. Elemen-
tary descriptions of DL are atomic concepts and atomic roles. Complex concept descriptions
can be built from the elementary constructors and construction rules. Different description
languages of DL are distinguished by the constructors they provide. For example, ALCHIN
DL extends the well known ALC DL with inverse roles, role inclusion axioms, and number
restrictions. Concept constructors in ALCHIN are formed according to the syntaxes in
Table 1.

Table 1: Syntax and Semantics of ALCHIN constructors

DL Constructor DL Syntax Semantics
top concept > 4I

bottom concept ⊥ ∅
atomic concept A AI ⊆ 4I

concept name C CI ⊆ 4I

atomic negation ¬A 4I \AI

concept negation ¬C 4I \ CI

concept conjunction C uD CI ∩DI

concept disjunction C tD CI ∪DI

exists restriction ∃R.C {x ∈ 4I |∃y. < x, y >∈ RI ∧ y ∈ CI}
value restriction ∀R.C {x ∈ 4I |∀ y. < x, y >∈ RI → y ∈ CI}
inverse role R− (R−)I(y, x) = RI(x, y)
at-most restriction ≤ nR {x ∈ 4I |]{y ∈ 4I |RI(x, y)} ≤ n}
at-least restriction ≥ nR {x ∈ 4I |]{y ∈ 4I |RI(x, y)} ≥ n}

Description Logics have a model theoretic semantics, which is defined by interpreting
concepts as sets of individuals and roles as sets of pairs of individuals. An interpretation

73

I is a pair I = (∆I , ·I) consisting of a domain ∆I which is a non empty set and of an
interpretation function ·I which maps each individual x into an element of ∆I (x ∈ ∆I),
each concept C into a subset of ∆I (CI ⊆ ∆I) and each atomic role R into a subset of
∆I ×∆I (R ⊆ ∆I ×∆I). The interpretations of complex concept descriptions are shown in
Table 1.

A knowledge base (KB) based on DL KB =< T,A > consists of two parts: the termi-
nological box (TBox T) and the assertion box (ABox A). There are two kinds of assertions
in the ABox of a DL KB: concept individual and role individual. A concept instance asser-
tion has the form C(a) while a role instance assertion is R(a, b). The semantics of asser-
tions is interpreted as the assertion C(a) (resp. R(a, b)) is satisfied by I iff aI ∈ CI (resp.
(aI , bI) ∈ RI).

A DL KB has several kinds of axioms. A concept inclusion axiom is an expression of
subsumption with the form C v D. The semantics of a concept inclusion axiom is interpreted
as the axiom is satisfied by I iff {x ∈ ∆I |∀x, x ∈ CI → x ∈ DI}. A concept equivalence
axiom is an expression of the form C ≡ D. Its semantics is that the axiom is satisfied
by I iff {x ∈ ∆I |∀x, x ∈ CI → x ∈ DI , x ∈ DI → x ∈ CI}. An inverse role axiom
is of the form R− ≡ R with the semantics interpreted as the axiom is satisfied by I iff
{x, y ∈ ∆I |(R−)I(y, x) = RI(x, y)}. An role inclusion axiom has the form R v P with its
semantic states that the axiom is satisfied by I iff {x, y ∈ ∆I |RI(x, y)→ P I(x, y)}. Similarly,
we can define the syntax of a role equivalence axiom as R ≡ P and its semantics.

3 Fuzzy Set Theory and Fuzzy Logic

Fuzzy set theory was first introduced by Zadeh [17] as an extension of the classical notion
of set to capture the inherent vagueness (the lack of crisp boundaries of sets). Fuzzy logic
is a form of multi-valued logic derived from fuzzy set theory to deal with reasoning that
is approximate rather than precise. Just as in fuzzy set theory the set membership values
can range between 0 and 1, in fuzzy logic the degree of truth of a statement can range
between 0 and 1 and is not constrained to the two truth values true, false as in classic
predicate logic [10]. Formally, a fuzzy set X with respect to a set of elements Ω (also called
a universe) is characterized by a membership function µ(x) which assigns a value in the real
unit interval [0,1] to each element x in X (x ∈ X). µ(x) gives us an estimation that an
element x belongs to a set X to a certain degree. Such degrees could be computed based on
some specific membership functions. Figure 1 summarizes the most frequently used crisp,
trapezoidal, triangular, left-shoulder, and right-shoulder membership functions. Here we
define these functions as crisp(a,b), leftshoulder(a,b), rightshoulder(a,b), triangular(a,b,c),
and trapezoidal(a,b,c,d) respectively. The domain of these membership functions are defined
as [k1, k2].

For example, a fuzzy set Young is defined by a left shoulder membership function left-
shoulder(30,50) as shown in Figure 2. Now we know, John is 34 years old. Therefore,
we have Young(John)=0.8 which means the statement ”John is a young man” has a truth
value of 0.8. But more often, we want to make vaguer statements, saying that ”John is a
young man” has a truth value of greater than or equal to 0.8. Such a statement can be

74

Figure 1: An example of propagating logical consequences in the interface-based modular-
ization formalism

written as Young(John)≥ 0.8. Another kind of mainly used statement is less than or equal
to. In order to describe all the above statements in a unified form, we propose a syntax as
[l, u](0 ≤ l ≤ u ≤ 1). Therefore, Y oung(John) ≥ 0.8 can be written as Y oung(John) [0.8, 1]
and Y oung(John) ≤ 0.8 as Y oung(John) [0, 0.8].

Figure 2: An example of propagating logical consequences in the interface-based modular-
ization formalism

A fuzzy relation R is over two fuzzy sets X1 and X2 is defined by a function R : Ω×Ω→
[0, 1]. For example, the statement ”Young people drive fast” has a truth value of greater
than or equal to 0.6 can be defined as a fuzzy relation R over two fuzzy sets Y oung and
Fast : R(John, 150) [0.6, 1].

Fuzzy logic extends the Boolean operations such as complement, union, and intersection,
defined on crisp sets and relations in the context of fuzzy sets and fuzzy relations. These
operations are interpreted as mathematical functions over the unit interval [0,1]. The math-

75

ematical functions for fuzzy intersection are usually called t-norms, those for fuzzy union
are called s-norms, and the fuzzy set complement is called negation. Different types of such
operations in Fuzzy Logic including Zadeh Logic, Lukasiewicz Logic, Product Logic, and
Gödel Logic, are summarized in Table 2. All these operations satisfy certain mathematical
properties.

Table 2: Fuzzy Operations

Zadeh Lukasiewicz
Logic

Product
Logic

Gödel Logic

t-norms
(t(x, y))

min(x, y) max(x+y−1, 0) x · y min(x, y)

s-norms
(s(x, y))

max(x, y) min(x + y, 1) x + y− x · y max(x, y)

negation
(¬x)

1− x 1− x if x=0 then
1 else 0

if x=0 then
1 else 0

4 Fuzzy Description Logic

4.1 Syntax of fALCHIN
Concept descriptions in fALCHIN are formed based on the following syntax:

C → >|⊥|A|C|¬A|¬C|C uD|C tD|∃R.C|∀R.C| ≥ nR| ≤ nR

We can see that the syntax of this fuzzy description logic is identical to that of the
standard description logics. But here in fALCHIN , the concepts and roles are defined as
fuzzy concepts (i.e. fuzzy sets) and fuzzy roles (i.e. fuzzy relations).

4.2 Semantics of fALCHIN
Similar to classical DL, the semantics of the proposed fALCHIN is based on the notion of
interpretation. Classical interpretations is extended to the concept of fuzzy interpretations
by using membership functions that range over the interval [0,1]. An fuzzy interpretation I
is a still pair I = (∆I , ·I) consisting of a domain ∆I which is a non empty set and of a fuzzy
interpretation function ·I which maps each individual x into an element of ∆I (x ∈ ∆I),
each concept C into a membership function of CI : ∆I → [0, 1], and each atomic role R into
a membership function of RI : ∆I ×∆I → [0, 1].

Next we define the semantics of fALCHIN constructors, including the top concept,
the bottom concept, concept negation, concept conjunction, concept disjunction, role exists
restriction, role value restriction, and number restrictions. We explain how to apply the
fuzzy logic operations in Table 2 to the proposed fALCHIN with some examples.

The semantics of the top concept > is the greatest element in the domain ∆I , that is,
>I = 1 (∀x, x ∈ ∆I). Please note that, in classical DL, the top concept > ≡ A t ¬A, while

76

in fALCHIN , > 6= A t ¬A. As shown in Table 2, after applying the s-norms on A t ¬A,
the result is no longer 1, which is contradictory to intuition. Therefore, we explicitly define
the top concept, stating that the truth degree of x in > is 1. Similarly, the bottom concept
⊥ is the least element in the domain, defined as ⊥I = 0 (∀x, x ∈ ∆I).

The concept negation (also known as concept complement) ¬C is interpreted with a
mathematical function which satisfies

1. ¬>I(x) = 0,¬⊥I(x) = 1.

2. self-inverse, i.e., (¬¬C)I(x) = CI(x).

For example, if we have the statement ”John is a young man” has a truth value of greater
than or equal to 0.8 (Y oung(John) [0.8, 1]), and assume we choose the negation operator in
Zadeh logic or Lukasiewicz logic, then the statement ”John is not a young man” is written
as ¬Y oung(John) = ¬[0.8, 1] = [0, 0.2].

The interpretation of concept conjunction (also called concept intersection) is defined by
t-norms as

(C uD)I(x) = t(CI(x), DI(x)) (∀x, x ∈ ∆I)

For example, if we have Y oung(John) [0.8, 1] and Tall(John) [0.7, 1], and assume the
minimum function is chosen as the t-norm, then the certainty that John is both young and
tall is (Y oung u Tall)(John) = min([0.8, 1], [0.7, 1]) = [0.7, 1].

The interpretation of concept disjunction/union is defined by the s-norms as

(C tD)I(x) = s(CI(x), DI(x)) (∀x, x ∈ ∆I)

For example, if we have Y oung(John) [0.8, 1] and Tall(John) [0.7, 1], and the s-norm is
maximum, then the certainty that John is either young or tall is (Y oung t Tall)(John) =
max([0.8, 1], [0.7, 1]) = [0.8, 1].

The semantics of role exists restriction ∃R.C is the result of viewing ∃R.C as the open first
order formula ∃y.FR(x, y)∧ FC(y) and the existential quantifier ∃ is viewed as a disjunction
over the elements of the domain. Therefore, we define

(∃R.C)I(x) = supy∈∆I{t(RI(x, y), CI(y))}
Suppose we have hasV italDisease(John,Cancer) [0.2, 1], V italDisease(Cancer) [0.5, 1],

hasV italDisease(John,Cold) [0.6, 1], and V italDisease(Cold) [0.1, 1]. Further we assume
the minimum function is chosen as the t-norm, then

(∃R.C)I(x) = sup{min(hasV italDisease(John,Cancer), V italDisease(Cancer)),
min(hasV italDisease(John,Cold), V italDisease(Cold))}

= sup{min([0.2, 1], [0.5, 1]),min([0.6, 1], [0.1, 1])}
= sup [0.2, 1], [0.1, 1] = [0.2, 1]

That is, the truth degree for the complex concept assertion (∃ hasVitalDisease.VitalDisease)
(John) is greater than or equal to 0.2.

A role value restriction ∀R.C is viewed as an implication of the form ∀y ∈ ∆I , RI(x, y)→
CI(x). As proposed by Hajek [5], we interpret ∀ as inf. Furthermore, in classical logic, a→ b
is a shorthand for ¬a ∨ b, we can thus interpret → as the Kleene-Dienes implication and
finally get its semantics as (∀R.C)I(x) = infy∈∆I{s(¬RI(x, y), CI(y))}.

77

A fuzzy at-least restriction is of the form ≥ nR whose semantic

(≥ nR)I(x) = supy1,...,yn∈∆I ,yi 6=yj ,1≤i<j≤n t
n
i=1{RI(x, yi)}

is derived from its first order formula

∃y1, . . . , yn. ∧n
i=1 R(x, yi)

∧∧1≤i<j≤nyi 6= yj.

The semantics states that there are at least n distinct elements that satisfy to some
degree.

Furthermore, since ≤ nR ≡ ¬(≥ (n + 1)R), we define the semantics of a fuzzy at-most
restriction as

(≤ nR)I(x) = ¬(≥ (n+ 1)R)I(x)
= ¬ supy1,...,yn+1∈∆I ,yi 6=yj ,1≤i<j≤n+1 t

n+1
i=1 {RI(x, yi)}

= infy1,...,yn+1∈∆I ,yi 6=yj ,1≤i<j≤n+1 s
n+1
i=1 {¬RI(x, yi)}

The FOL translation of a concept inclusion axiom C v D has the form ∀x.C(x)→ D(x),
therefore, its semantics is defined as

(C v D)I(x) = infx∈∆I CI(x)→ DI(x) = infx∈∆I{s(¬CI(x) ∨DI(x))}.
Similarly, the semantics of a role inclusion axiom R v P is

(R v P)I(x, y) = infx,y∈∆I{s(¬RI(x, y) ∨ P I(x, y))}.
The semantics of the complex concept descriptions for fALCHIN are summarized in

Table 3.

Table 3: Syntax and Semantics of ALCHIN constructors

Constructor Syntax Semantics
top concept > >I = 1
bottom concept ⊥ ⊥I = 0
atomic negation ¬A (¬A)I(x) = ¬AI(x)
atomic negation ¬C (¬C)I(x) = ¬CI(x)
concept conjunction C uD (C uD)I = t(CI(x), DI(x))
concept disjunction C tD (C tD)I = s(CI(x), DI(x))
exists restriction ∃R.C (∃R.C)I(x) = supy∈∆I{t(RI(x, y), CI(y))}
value restriction ∀R.C (∀R.C)I(x) = infy∈∆I{s(¬RI(x, y), CI(y))}
inverse role R− (R−)I(y, x) = RI(x, y)
at-least restriction ≥ nR (≥ nR)I(x) =

supy1,...,yn∈∆I ,yi 6=yj ,1≤i<j≤n tni=1{RI(x, yi)}
at-most restriction ≤ nR (≤ nR)Ix ≡ ¬(≥ (n + 1)R)I(x)
concept inclusion axiom C v

D
(C v D)I(x) = infx∈∆I{s(¬CI(x) ∨DI(x))}

role inclusion axiom R v
P

(R v P)I(x, y) = infx,y∈∆I{s(¬RI(x, y) ∨
P I(x, y))}

concept instance assertion C(a) CI(a)
role instance assertion R(a, b) RI(a, b)

78

4.3 Knowledge Bases in fALCHIN
A fuzzy knowledge base in fALCHIN consists of a finite set of fuzzy axioms and fuzzy
assertions. A fuzzy concept inclusion axiom has a form of C v D [l, u] (0 ≤ l ≤ u ≤ 1)
which describes that the subsumption degree between concept C and D is from l to u.

For example, the axiom

Professor v (∃publishes.Journalpaper u ∃teaches.Graduatecourse) [0.8, 1]

states that the concept professor is subsumed by publishing journal papers and teaching
graduate courses with a certainty degree of at least 0.8.

A fuzzy role inclusion axiom has the form R v P [l, u] (0 ≤ l ≤ u ≤ 1). A fuzzy concept
assertion and a fuzzy role assertion are of the form C(a) [l, u] and the form R(a, b) [l, u]
respectively.

5 Related Work

Uncertainty is known as an intrinsic feature of the World Wide World and Semantic Web.
W3C even founded a group, the Uncertainty Reasoning for the World Wide Web (URW3)
Incubator Group, which is dedicated to define the challenge of representing and reasoning
with uncertain information. According to the latest URW3 draft report, uncertainty is a
term intended to include different forms of incomplete knowledge, including incompleteness,
inconclusiveness, vagueness, ambiguity, and others [8]. Mathematical theories for repre-
senting uncertainty information includes, but not limited to, probability, Fuzzy Sets, Belief
Functions, Random Sets, Rough Sets, and combination of several models (Hybrid).

There has been some work carried out in integrating uncertainty knowledge into Descrip-
tion Logics in the last decades [6][7][12][13][14][11][9]. Current literature generally can be
divided into two approaches. One is based on probabilistic theory [6][7][9] and the other is
based on fuzzy logic [15][12][13][14][11]. Although both approaches assign numerical values
to entries in a knowledge base, they are quite different; not only from a technical point of
view, but also with respect to the basic phenomena they are trying to model. Probabilistic
theory refers to a proposition that is either true or false, but due to a lack of information
we do not know for certain which one is the case. It represents the probability with which a
proposition is assumed to be true. For example, John can be assumed to be a student with
the probability 0.6 and a teacher with the probability 0.4. On the other hand, fuzzy logic is
used to represent the vagueness of a proposition, which means the proposition itself is only
true to a certain degree. For example, John, measuring 1.85m, might be said to be tall with
the degree of truth 0.9.

Our fuzzy description logic extended the expressiveness of the fuzzy ALC in [15][12] to
support at-least and at-most number-restriction, as well as inverse-role and role-hierarchy
constructors. Unlike other approaches based on fuzzy logic [15][12][13][11][16] which only
deal with crisp subsumption of fuzzy concepts, our fuzzy description logic deals with fuzzy
subsumptions of fuzzy concepts and addresses its semantics. We believe that fuzzy subsump-
tion of fuzzy concepts in the form of is closer to the uncertain knowledge existing in the real
world applications. [14] first proposed the notion of fuzzy subsumption but only used a form ,

79

while our approach generalizes it to a range of certainty values. Furthermore, we use general
t-norm, s-norm, negation and implication in the semantics of our proposed fuzzy description
logic, such that the interpretation of complex concept descriptions can follow different types
of operations in Fuzzy Logic, such as, Zadeh Logic, Lukasiewicz Logic, Product Logic, and
Gödel Logic.

6 Conclusion and Future Work

In this paper, we proposed an extension to Description Logics based on Fuzzy Set Theory
and Fuzzy Logic. The syntax and semantics of the proposed description logic fALCHIN
were explained in details. We also addressed the components of a fALCHIN knowledge
base.

Description Logics is a family of description languages with different expressiveness. Our
fuzzy description language extends the fuzzy ALC and takes into account inverse roles, role
inclusion axioms, and number restrictions, but leaves alone transitive roles, nominals (i.e.
collection of individuals) and datatypes for the reason of simplicity. Future work will include
a fuzzy extension to more expressive description languages.

From the point view of reasoning with a fALCHIN knowledge base, we present different
reasoning tasks and the reasoning algorithm in another upcoming paper, because of the
length limit here.

From the point view of implementing a corresponding reasoner, the plan is to build
it on top of Pellet (http://clarkparsia.com/pellet/). Pellet is an open-source Java based
OWL DL reasoner. Our extension of Pellet will provide functionalities to check consistency,
entailments and subsumptions of a knowledge base.

References

[1] Baader, F., Calvanese, D., Mcguinness, D., Nardi, D., and Patel-
Schneider, P. The Description Logic Handbook: Theory, Implementation and Ap-
plications. Cambridge University Press, Cambridge, MA, 2003.

[2] Baader, F., and Sattler, U. An overview of tableau algorithms for description
logic. Studia Logica 69, 1 (2001), 5–40.

[3] Berners-Lee, T., Hendler, J., and Lassila, O. The semantic web. Scientific
American 284, 5 (2001), 34–44.

[4] Damasio, C. V., Pan, J., Stoilos, G., and Straccia, U. Representing uncer-
tainty in ruleml. Fundamenta Informaticae 82 (2008), 1–24.

[5] Hjek, P. Metamathematics of fuzzy logic. Kluwer, 1998.

80

[6] Jaeger, M. Probabilistic reasoning in terminological logics. In Proc. of the 4th Int.
Conf. on the Principles of Knowledge Representation and Reasoning (KR94) (1994),
pp. 305–316.

[7] Koller, D., Levy, A., and Pfeffer, A. P-classic: A tractable probabilistic de-
scription logic. In Proceedings of the Fourteenth National Conference on Artificial In-
telligence (AAAI-97) (1997), pp. 390–397.

[8] Laskey, K., Laskey, K., Costa, P., Kokar, M., Martin, T.,
and Lukasiewicz, T. W3c incubator group report. Tech. Rep.
http://www.w3.org/2005/Incubator/urw3/wiki/DraftFinalReport, W3C, 05 March,
2008.

[9] Lukasiewicz, T. Expressive probabilistic description logics. Artificial Intelligence
172, 6/7 (2008), 852–883.

[10] Novk, V. Mathematical principles of fuzzy logic. Dodrecht: Kluwer Academic, 1999.

[11] Stoilos, G., Stamou, G., Pan, J., Tzouvaras, V., and Horrocks, I. Reasoning
with very expressive fuzzy description logics. Journal of Artificial Intelligence Research
30 (2007), 273–320.

[12] Straccia, U. A fuzzy description logic. In Proceedings of the 15th National Conference
on Artificial Intelligence (AAAI’98) (1998), pp. 594–599.

[13] Straccia, U. Reasoning within fuzzy description logics. Journal of Artificial Intelli-
gence Research 14 (2001), 137–166.

[14] Straccia, U. Towards a fuzzy description logic for the semantic web (preliminary
report). In 2nd European Semantic Web Conference (ESWC-05) (2005), Lecture Notes
in Computer Science, Springer Verlag, pp. 167–181.

[15] Tresp, C. B., and Molitor, R. A description logic for vague knowledge. In Proc.
of the 13th Eur. Conf. on Artificial Intelligence (ECAI’98) (1998), pp. 361–365.

[16] Venetis, T., Stoilos, G., Stamou, G., and Kollias, S. f-dlps: Extending
description logic programs with fuzzy sets and fuzzy logic. In Fuzzy Systems Conference,
2007. FUZZ-IEEE 2007. IEEE International (2007), pp. 1–6. ID: 1.

[17] Zadeh, L. A. Fuzzy sets. Information and Control 8, 3 (1965), 338–353.

81

82

83

84

85

86

87

88

89

90

91

92

Abstracts of 2008 research
publications

Fixed-Parameter Tractability of Anonymizing Data by Suppressing
Entries

R. Chaytor, P. Evans*, and H.T. Wareham
Proceedings of the 2nd Annual International Conference on Combinatorial Optimization and Ap-
plications (COCOA 2008), Springer-Verlag LNCS 5165 (2008), 23-31.
Abstract
A popular model for protecting privacy when person-specific data is released is k-anonymity. A
dataset is k-anonymous if each record is identical to at least (k ? 1) other records in the dataset.
The basic k- anonymization problem, which minimizes the number of dataset entries that must be
suppressed to achieve k-anonymity, is NP-hard and hence not solvable both quickly and optimally in
general. We apply parameterized complexity analysis to explore algorithmic options for restricted
versions of this problem that occur in practice. We present the first fixed-parameter algorithms for
this problem and identify key techniques that can be applied to this and other k-anonymization
problems.

Using Behavioral Specification for Digital System Design

Ke Deng, Eric E. Aubanel, and Kenneth B. Kent
TR08-189, University of New Brunswick, 65 pages, January 2008.
Abstract
This report documents experiences on using behavioral specification for digital system design from
the viewpoint of a computer science student with limited knowledge in hardware. The first three
sections of this report review the background and basics of OpenMP, VHDL and Handel-C indi-
vidually. Each of these three sections includes discussion of a related implementation example,
which examines practical considerations. In addition, the OpenMP section includes background on
parallel computing and its specifications; the VHDL section also discusses fundamental concepts of
digital system design; the Handel-C section also includes background on Field Programmable Gate
Arrays (FPGAs). The last section compares OpenMP and Handel-C with VHDL and comments
on the results.

A Resource Discovery Framework for Semantic Grids Based on the
Interface-Based Modular Ontology Formalism

F. Ensan, and Weichang Du
SKG ’08. Fourth International Conference on Semantics, Knowledge and Grid, 2008.
Abstract
Semantic grids refer to those grids that their resources and services have been described by the
means of semantic Meta data and ontologies. In this paper we propose a resource discovery frame-
work for semantic grids using the notion of modular ontologies. We exploit interface-based modular
ontology formalism whose through ontologies can be described and be accessed by a set of inter-
faces. We show how this formalism help looking for distributed resources in semantic grids. We
describe the architecture of the resource manager’s nodes and their resource discovery algorithms.

An Architecture and Formalism for Handling Modular Ontologies

Faezeh Ensan
, Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)
Abstract
The goal of my ongoing work is to provide an architecture for developing and manipulating modular
ontologies in such a way that each ontology module can plug into or unplug from an ontology.
This architecture builds on top of a fundamental formalism for modular ontologies. Through this
formalism we are able to define mechanisms for integrating different modules and develop algorithms
for reasoning over the integrated modules. The resolution of inconsistencies arisen by conflicting
axioms in different modules as well as the investigation of the impact of changes in a module on the
other ontology modules are two important issues that need to be taken into consideration during
the development of the formalism. Here, we briefly review the overall structure of the research
work that I intended to conduct.

Aspects of Inconsistency Resolution in Modular Ontologies

Faezeh Ensan, and Weichang Du
Advances in Artificial Intelligence, 21st Conference of the Canadian Society for Computational
Studies of Intelligence, Canadian AI 2008 Windsor, Canada, May 28-30, 2008 Proceedings.
Abstract
Modularization entails more efficient reasoning and better performance in the ontology manip-
ulation process. Therefore, the development of modular ontologies has recently received much
attention. One of the most important issues in modular ontologies is dealing with inconsistencies.
An inconsistent module may affect the other modules and cause a modular ontology to become
inconsistent. Furthermore, the integration of different consistent modules may also result in incon-
sistency. In this paper, we investigate various types of inconsistencies in modular ontologies. We
mostly focus on an interface-based ontology modularity formalism and propose a strategy and an al-
gorithm for isolating inconsistent modules and resolving inconsistencies arisen from the integration
of different ontology modules.

94

Formalizing Ontology Modularization through the Notion of Inter-
faces

Faezeh Ensan
Knowledge Engineering: Practice and Patterns, 16th International Conference, EKAW 2008, Ac-
itrezza, Italy, September 29 - October 2, 2008.
Abstract
In this paper, we propose a new formalism for modular ontologies, which exploits the notion of
interfaces as well as epistemic queries. In the proposed formalism, each ontology module both
employs and realizes two distinct sets of interfaces. The axioms in each interface form the public
section of the ontology module, while its ABox and TBoxes are private and can only be accessed
through epistemic queries. This formalism permits the separation of configuration and development
time manipulation tasks of a modular ontology development process. Hence, ontology modules can
be developed independently of each others’ signature and description language.

Formalizing the Role of Goals in the Development of Domain-
Specific Ontological Frameworks

Faezeh Ensan, and Weichang Du
Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008),
2008
Abstract
In this paper we propose a high-level scheme that assists ontology engineers develop appropriate
ontological frame- works. By ontological frameworks we mean those structures that specify partic-
ular phases and also provide implemented components for developing ontologies. Based on the i*
conceptual modeling framework, our proposed scheme guides ontology engineers by customizing a
suitable onto- logical framework based on their preferences and their speficific domain necessities.
In the proposed scheme, We specify the users of an ontological framework, their high-level soft-
goals as well as the goals that contribute to these softgoals. We exploit business processes and bind
them to the goals in order to implement the framework.

An Interface-Based Ontology Modularization Framework for Knowl-
edge Encapsulation

Faezeh Ensan, and Weichang Du
7th International Semantic Web Conference, ISWC 2008, Karlsruhe, Germany, October 26-30,
2008.
Abstract
In this paper, we present a framework for developing ontologies in a modular manner, which is based
on the notions of interfaces and knowledge encapsulation. Within the context of this framework, an
ontology can be defined and developed as a set of ontology modules that can access the knowledge
bases of the others through their well-defined interfaces. An important implication of the proposed

95

framework is that ontology modules can be developed completely independent of each others’ sig-
nature and language. Such modules are free to only utilize the required knowledge segments of the
others. We describe the interface-based modular ontology formalism, which theoretically supports
this framework and present its distinctive features compared to the exiting modular ontology for-
malisms. We also describe the real-world design and implementation of the framework for creating
modular ontologies by extending OWL-DL and modifying the Swoop interfaces and reasoners.

Agility DK Tutorial with the Amirix AP1100

Farnaz Gharibian, and Kenneth B. Kent
ICI-201, ver. 1.0, Canadian Microelectronics Corporation, 85 pages, September 24, 2008.
Abstract
No abstract.

An Embedded Decryption/Decompression Engine using Handel-C

Farnaz Gharibian, and Kenneth B. Kent
2008 IEEE International Symposium on Industrial Embedded Systems, Montpellier, France, pp.
51-57, June 11-13, 2008.
Abstract
Speed and security of data streams are two key factors in different areas such as data communication
and multimedia. Compression algorithms are applied to data streams to increase their communica-
tion speed while encryption algorithms are used for assuring the security of the data transfer. AES
and LZ77 are two well known algorithms for data encryption and compression respectively. In this
paper we propose a model to implement both algorithms, decryption and decompression, in a Field
Programmable Gate Array chip. Such a design must address the issues of optimal resource usage
of the FPGA, and balance between the throughput of both algorithms. Handel-C is considered as
the specification language for this design.

Agility DK Tutorial with the Amirix AP1100

Farnaz Gharibian, and Kenneth B. Kent
ICI-201, ver. 1.0, Canadian Microelectronics Corporation, 85 pages, September 24, 2008.
Abstract
No abstract.

Embedded Systems: New Challenges and Future Directions

Fabiano Hessel , Kenneth B. Kent and Dionisis Pnevimatikatos
ACM Transactions on Embedded Computing Systems, vol. 7, issue 4, article 37, pp. 1-3, July
2008.

96

Abstract
No abstract.

Application Specific Instruction Sets and their Impact on the De-
sign Space

Kenneth B. Kent, Joseph C. Libby, and Ryan Wood
2008 IEEE Rapid Systems Prototyping Symposium, Monterey, USA, pp. 175-181, June 2-5, 2008.
Abstract
The widespread availability of Field Programmable Gate Arrays (FPGA) coupled with different
implementations of ”soft-core” processors has created a need to find new methods for optimizing
these processors. Because design space is limited on most FPGA’s and the maximum clock rate of
these processors is heavily bound to the overall size and resource usage it is necessary to find ways
to minimize the size of the processor. One such way to minimize the size of a ”soft-core” processor
is to customize the instruction set on which it operates. Removing instructions that are supported
but not utilized by target applications may provide a reduction in design space usage as well as an
increase in maximum clock frequencies for the processor.

Determining the Optimal FPGA Design for Computing Highly Par-
allel Problems

Kenneth B. Kent, and Jacqueline E. Rice
to appear in IET Computer and Digital Techniques journal (15 pages), September 2008.
Abstract
Recongurable hardware has recently shown itself to be an appropriate solution to speeding up
problems that are highly dependent on a particular complex or repetitive sub-algorithm. In most
cases these types of solutions lend themselves well to parallel solutions. We investigate the optimal
design, maximizing performance while existing within the target FPGA resources, on FPGAs for
problems with algorithms or sub-algorithms that can be highly parallelized.

Automatic Identification of Parallelism in Handel-C

Joseph C. Libby, Farnaz Gharibian, and Kenneth B. Kent
2008 Euromicro Digital System Design Symposium , Parma, Italy, pp. 660-664, September 3-5,
2008.
Abstract
High level hardware design languages are making it possible for people with little background in
hardware design to create their own custom hardware. This allows software designers to begin
looking beyond general purpose computing into the realm of customized hardware in order to
increase the performance of their applications. The ease with which hardware can be developed
using hardware definition languages comes with a cost. Developers accustomed to working in
software environments may have issues dealing with some of the more complex facets of hardware

97

design, such as exploiting parallelism. This work aims to alleviate some of the frustration that may
occur when attempting to identify and exploit parallelism in a hardware design by providing a set
of tools that can automatically identify parallelism in Handel-C hardware designs.

An Embedded Implementation of the Common Language Infras-
tructure

Joseph C. Libby, and Kenneth B. Kent
to appear in Elsevier Journal of System Architectures (13 pages), September 2008.
Abstract
The Common Language Infrastructure (CLI) provides a unified instruction set which may be tar-
geted by a variety of high level language compilers. This unified instruction set simplifies the
construction of compilers and gives application designers the ability to choose the high level pro-
gramming language that best suits the problem being solved. While the Common Language In-
frastructure solves many problems related to design of applications and compilers, it is not without
its own problems. The Common Language Infrastructure is based upon a virtual machine, much
like the Java Virtual Machine. This requires that all instructions being executed on the Common
Language Infrastructure be translated to native machine instructions before they can be executed
on the host processor. This leads to degradation in performance. In order to overcome this prob-
lem it is proposed that an embedded processor capable of natively executing the CLI instruction
set be developed. The objective of this work is the design and implementation, using VHDL and
simulation, of an embedded processor capable of natively executing the CLI instruction set. This
processor provides a platform easily targeted by software developers.

Automated Extraction of Concurrency and Pipelined Data Paths
in Handel-C

Joseph C. Libby, and Kenneth B. Kent
Design Automation Conference (DAC) High-Level Synthesis: Back To The Future Workshop 2008,
Anaheim, USA, 1 page, June 8, 2008.
Abstract
No abstract.

A Handel-C Implementation of a Computationally Intensive Prob-
lem in GF(3)

Jonathan Lutes, Joseph C. Libby, and Kenneth B. Kent
International Conference on Advances in Electronics and Micro-electronics, Valencia, Spain, pp.
36-41, September 29 - October 4, 2008. - Received Best Paper Award.
Abstract
Computing the irreducible and primitive polynomials under GF(3) is a computationally intensive

98

task. A hardware implementation of this algorithm should prove to increase performance, reducing
the time needed to perform the computation. Previous work explored the viability of a co-designed
approach to this problem and this work continues addressing the problem by moving the entire
algorithm into hardware. Handel-C was chosen as the hardware description language for this work
due to its similarities with ANSI C used in the software implementation.

Service Composition for GIS

Sai Ma, Minruo Li, and Weichang Du
pp.168-175, 2008 IEEE Congress on Services - Part I, 2008.
Abstract
A Geographical Information System (GIS) is a system that captures, analyzes, and manages any
spatially referenced data. One common problem in the GIS community is how to generate and
publish customized web maps. The existing solutions either deal with spatial data directly which
does not allow for applying the customized features, or require and rely on advanced and specialized
programming skills. We believe that applying Service Oriented Architecture (SOA) to GIS can
improve the interoperability of different GISs and can combine different GISs to provide customized
web maps using a web service orchestration language. In this paper, we present a novel solution that
applies SOA and Business Process Execution Language (BPEL) to orchestrate web map services
into a customized web map. The process of requesting a map layer from a map service provider
is an invocation of the remote GIS map service. The process of generating a customized web map
becomes a process of combining different GIS map services into a BEPL process. This makes it
possible to generate the business logic in BPEL first and then execute it to obtain a new map.
Ideally, once the process is generated in BPEL, it can be plugged into any GIS system. This
new solution generates a single new map after all layers are combined together, while the existing
Asynchronous JavaScript and XML (AJAX) based solution gives a stack of map layers and the
layers cannot be saved as one map. We have implemented a framework for the map creator to
combine map layers published by different map service providers into a single new map, save the
map composition process logic, and publish the new map as a service. Also, the framework provides
map brokers more control of and easier interaction with the map composition process.

Flexible Software-Hardware Network Intrusion Detection System

Chen Nan, Ryan Proudfoot, Eric E. Aubanel, and Kenneth B. Kent
2008 IEEE Rapid Systems Prototyping Symposium, Monterey, USA, pp. 182-188, June 2-5, 2008.
Abstract
Network Intrusion Detection Systems (NIDS) and Quality of Service (QoS) demands have been
steadily increasing over the past few years. Current solutions using software become inefficient
running on high speed high volume networks and will end up dropping packets. Hardware solutions
are available and result in much higher efficiency but present problems such as flexibility and cost.
Our proposed system uses a modified version of Snort, a robust widely deployed open sourced
NIDS. It has been found that Snort spends at least 30% - 60% of its processing time doing pattern
matching. Our proposed system runs Snort in software until it gets to the pattern matching function

99

and then offloads that processing to the Field Programmable Gate Array (FPGA). The software
can then go on to other processing while it waits for the results from the FPGA. The hardware
is able to process data at up to 1.7GB/s on one Xilinx XC2VP100 FPGA. Our system is more
flexible than other FPGA string matching designs in that the rules are not hardcoded. The design
is scaleable and will allow for multiple FPGAs to be used in parallel to increase the processing
speed even further.

Predicting User Preferences via Similarity-Based Clustering

Mian Qin, Scott Buffett and Michael W. Fleming
Proceedings of the 21st Canadian Conference on Artificial Intelligence, pages 222-233(2008).
Abstract
This paper explores the idea of clustering partial preference relations as a means for agent prediction
of users’ preferences. Due to the high number of possible outcomes in a typical scenario, such as
an automated negotiation session, elicitation techniques can provide only a sparse specification of
a user’s preferences. By clustering similar users together, we exploit the notion that people with
common preferences over a given set of outcomes will likely have common interests over other
outcomes. New preferences for a user can thus be predicted with a high degree of confidence by
examining preferences of other users in the same cluster. Experiments on the MovieLens dataset
show that preferences can be predicted independently with 70-80% accuracy. We also show how an
error-correcting procedure can boost accuracy to as high as 98%.

Identifying Sources of Intractability in Cognitive Models: An Illus-
tration using Analogical Structure Mapping

I. van Rooij*, P. Evans, M. Muller, J. Gedge, and H.T. Wareham
Proceedings of the 30th Annual Conference of the Cognitive Science Society (CogSci 2008), 915-
920.
Abstract
Many computational models in cognitive science and arti?cial intelligence face the problem of
computational intractability when assumed to operate for unrestricted input domains. Tractability
may be achieved by restricting the input domain, but some degree of generality is typically required
to model human-like intelligence. Moreover, it is often non-obvious which restrictions will render
a model tractable or not. We present an analytical tool that can be used to identify sources of
intractability in a model’s input domain. For our illustration, we use Gentner’s Structure-Mapping
Theory of analogy as a running example.

A Novel Covariance Matrix Based Approach for Detecting Network
Anomalies

Mahbod Tavallaee, Wei Lu, Shah Arif Iqbal, and Ali A. Ghorbani
Sixth Annual Conference on Communication Networks and Services Research (CNSR’08), pages

100

75-81
Abstract
During the last decade, anomaly detection has attracted the attention of many researchers to
overcome the weakness of signature-based IDSs in detecting novel attacks. However, having a
relatively high false alarm rate, anomaly detection has not been wildly used in real networks. In
this paper, we have proposed a novel anomaly detection scheme using the correlation information
contained in groups of network traffic samples. Our experimental results show promising detection
rates while maintaining false positives at very low rates.

Detecting Network Anomalies Using Different Wavelet Basis Func-
tions

Wei Lu, Mahbod Tavallaee, and Ali A. Ghorbani
Sixth Annual Conference on Communication Networks and Services Research (CNSR’08), pages
149-156
Abstract
Signal processing techniques have been applied recently for analyzing and detecting network anoma-
lies due to their potential to find novel or unknown intrusions. In this paper, we present a novel
network anomaly detection approach based on wavelet analysis, approximate autoregressive and
outlier detection techniques. In order to characterize network traffic behaviors, we proposed fifteen
features and applied them as the input signals in our wavelet-based approach. We then evaluate
our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive com-
parison for four different typical wavelet basis functions on detecting network intrusions. Our work
aims to unveil a question when applying wavelet techniques for detecting network attacks, that is
”do wavelet basis functions have an important impact on the intrusion detection performance?”.
Moreover, to the best of our knowledge, the work is the first to analyze the 1999 DARPA’s network
traffic using flow data instead of its original raw packet data.

Criterion for Intensification and Diversification in Local Search for
SAT

W. Wei, C. M. Li, and H. Zhang
Journal on Satisfiability, Boolean Modeling and Computation (JSAT), special issue on SAT 2007
competitions and evaluations, June 2008, volume 4, pages 219-237. ISSN1574-0617.
Abstract
We propose a new switching criterion, namely the evenness or unevenness of the distribution of
variable weights, and use this criterion to combine intensification and diversification in local search
for SAT. We refer to the ways in which state-of-the-art local search algorithms adaptG2WSATP
and VW select a variable to flip, as heuristic adaptG2WSATP and heuristic VW, respectively. To
evaluate the effectiveness of this criterion, we apply it to heuristic adaptG2WSATP and heuristic
VW, in which the former intensifies the search better than the latter, and the latter diversifies
the search better than the former. The resulting local search algorithm, which switches between

101

heuristic adaptG2WSATP and heuristic VW in every step according to this criterion, is called
Hybrid. Our experimental results show that, on a broad range of SAT instances presented in
this paper, Hybrid inherits the strengths of adaptG2WSATP and VW, and exhibits generally
better performance than adaptG2WSATP and VW. In addition, Hybrid compares favorably with
state-of-the-art local search algorithm R+adaptNovelty on these instances. Furthermore, without
any manual tuning parameters, Hybrid solves each of these instances in a reasonable time, while
adaptG2WSATP, VW, and R+adaptNovelty have difficulty on some of these instances.

Switching Among Non-Weighting, Clause Weighting, and Variable
Weighting in Local Search for SAT

W. Wei, C. M. Li, and H. Zhang
In Proceedings of the 14th International Conference on Principles and Practice of Constraint Pro-
gramming (CP 2008), pages 313-326. Springer. LNCS 5202. September 14-18, Sydney, Australia.
Abstract
One way to design a local search algorithm that is effective on many types of instances is al-
lowing this algorithm to switch among heuristics. In this paper, we refer to the way in which
non-weighting algorithm adaptG2WSAT+ selects a variable to flip, as heuristic adaptG2WSAT+,
the way in which clause weighting algorithm RSAPS selects a variable to flip, as heuristic RSAPS,
and the way in which variable weighting algorithm VW selects a variable to flip, as heuristic VW.
We propose a new switching criterion: the evenness or unevenness of the distribution of clause
weights. We apply this criterion, along with another switching criterion previously proposed, to
heuristic adaptG2WSAT+, heuristic RSAPS, and heuristic VW. The resulting local search algo-
rithm, which adaptively switches among these three heuristics in every search step according to
these two criteria to intensify or diversify the search when necessary, is called NCVW (Non-, Clause,
and Variable Weighting). Experimental results show that NCVW is generally effective on a wide
range of instances while adaptG2WSAT+, RSAPS, VW, and gNovelty+ and adaptG2WSAT0,
which won the gold and silver medals, respectively, in the satisfiable random category in the SAT
2007 competition are not.

Uncertainty Treatment in the Rule Interchange Format: From En-
coding to Extension

Zhao, J. and Boley, H.
Proceedings of the ISWC 2008 Workshop on Uncertainty Reasoning for the Semantic Web
Abstract
The Rule Interchange Format (RIF) is an emerging W3C format that allows rules to be exchanged
between rule systems. Uncertainty is an intrinsic feature of real world knowledge, hence it is im-
portant to take it into account when building logic rule formalisms. However, the set of truth
values in the Basic Logic Dialect (RIF-BLD) currently consists of only two values (t and f). In
this paper, we first present two techniques of encoding uncertain knowledge and its fuzzy semantics
in RIF-BLD presentation syntax. We then propose an extension leading to an Uncertainty Rule

102

Dialect (RIF-URD) to support a direct representation of uncertain knowledge. In addition, rules
in Logic Programs (LP) are often used in combination with the other widely-used knowledge rep-
resentation formalism of the Semantic Web, namely Description Logics (DL), in order to provide
greater expressive power. To prepare DL as well as LP extensions, we present a fuzzy extension
to Description Logic Programs (DLP), called Fuzzy DLP, and discuss its mapping to RIF. Such
a formalism not only combines DL with LP, as in DLP, but also supports uncertain knowledge
representation.

Combining Fuzzy Description Logics and Fuzzy Logic Programs

Zhao, J. and Boley, H.
Proceedings of IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent
Agent Technology(WI-IAT 2008)
Abstract
Integrating rules and ontologies has become a key requirement for applications in the Semantic Web.
Web applications in general have also motivated another requirement, that of handling uncertainty,
an intrinsic feature of the real world. In this paper, we present a fuzzy extension to Description
Logic Programs (DLP), called fhDLP. fhDLP not only combines DL with LP, as in DLP, but also
supports uncertainty representation. More specifically, fuzzy hybrid knowledge bases layered on
fhDLP consist of fuzzy hybrid rules with embedded DL queries to fuzzy DL concepts, roles, and
axioms.

103

Abstracts of 2008 PhD Theses

The Collaborative Development of Para-consistent Conceptual Mod-
els Influenced by Uncertainty: A Belief-theoretic Approach

By Ebrahim Bagheri
Supervisor: Ali A. Ghorbani
Abstract
The high complexity and diversity of today’s design projects demands the participation of multiple
experts. The participating experts can influence the design process by sharing their perspective,
expertise and resources. The involvement of various experts is often known as collaborative mod-
eling and design. A collaborative modeling environment can encompass various geographical or
organizational boundaries. Such collaboration between experts can result in outcomes that may
be in practice either inconsistent, vague or incomplete. In this thesis, we provide a correspondence
between software conceptual models and annotated propositional belief bases. Through this anal-
ogy, we are able to analyze the contents of a given set of software conceptual models, which have
been developed by the participants of a collaborative modeling process, known as viewpoints, and
specify whether they are incomplete, incoherent, or inconsistent under a closed-world reasoning
assumption. Based on the software conceptual models’ properties introduced in this thesis, we
define an integration game through which the possible inconsistencies of the software conceptual
models are resolved. The game consists of several rounds of negotiation and is performed by two
main functions, namely choice and enhancement functions. The outcome of this game is a set of
inconsistency-free software conceptual models that can be easily integrated to form a unique fair
representative of the opinions of the participants. The contributions of the work in this thesis can
be briefly enumerated as follows: 1) the development of Subjective belief bases that address uncer-
tainty; 2) the formalization of a multi-stage belief integration game for the integration of multiple
Subjective belief bases; and 3) the provisioning of an analogy between Subjective belief bases and
software conceptual models. The proposed models are implemented in two Eclipse plug-ins and
are thoroughly evaluated from various perspectives. We evaluate our proposed processes through
a real-world case study where a group of Computer Science graduate students participate in the
study. In addition, we employ a multi-agent simulation to test the convergence and effectiveness of
the introduced formal concepts of the thesis. The evaluations have been performed on the basis of
the accuracy, precision, and recall of the final conceptual models, as well as the four scales of the
Computer System Usability Questionnaire. The results of the evaluations have been reported in
this thesis.

A Framework for User Guidance in Web Search Engine Interfaces
Based on Past Users Behavior

By Mohammadreza Barouni-Ebrahimi
Supervisor: Ali A. Ghorbani
Abstract
In this thesis, an adaptive Web search engine model is developed that assists its users in preparing
relevant queries by recommending the related frequent phrases mined from previous submitted
queries. The model also reorders the recommended pages of the conventional Web search engines
based on the users interests. Search engine query log mining has evolved overtime to data stream
mining due to the endless and continuous sequence of queries received by the search engines known
as query stream. We propose an Online Frequent Sequence Discovery (OFSD) algorithm to extract
frequent phrases from within query streams based on a new frequency rate metric which is suitable
for query stream mining. OFSD is an online, single pass and real-time frequent sequence miner
appropriate for data streams. The frequent phrases extracted by the OFSD algorithm are used
to guide novice users complete their search queries more efficiently. A re-rank method for the
retrieved pages of a conventionalWeb search engine is also proposed which relies on past users
clicks for each frequent phrase extracted by OFSD. The contribution of our proposed model is
three-fold. First, a Complementary Phrase Recommender module suggests a list of complementary
phrases that are syntactically compatible with the entered query segment. Second, a Semantic
Phrase Adviser module provides a list of the phrases that are semantically related to the entered
query segment. These two modules help the user enter the most related phrases to his/her intention
as a query. Third, a Page Rank Reviser module refines the order of the recommended documents
prepared by a conventional Web search engine to help the user find the related Web pages on top
of the list. Two query logs with different characteristics are used to evaluate the proposed model.
The experimental results confirm the significant benefit of monitoring frequent phrases within the
queries instead of using the whole query as a non-separable item. The number of the monitored
elements substantially decreases, which results in smaller memory consumption as well as better
performance. YourEye, our implemented adaptive Web search engine based on the proposed model
adjusted for the University of New Brunswick is introduced. Evaluation of YourEye by real users
confirms the efficiency of the proposed model in performance as well as user satisfaction.

Multidimensional Programs on Distributed Parallel Computers:
Analysis and Implementation

By Khaled M. Ben Hamed
Supervisor:Weichang Du
Abstract
This thesis presents analysis and efficient implementation of programs in multidimensional program-
ming languages on distributed parallel computers. By applying program analysis results, we design
a distributed scheduling algorithm for efficient execution of parallel tasks. We perform analysis of
multidimensional programs (MPs) to study and collect information on parallelism and dependence,
especially context parallelism and dependence. We define and implement an abstract distributed

105

eduction machine (ADEM) on which multidimensional programs run. From the analysis perspec-
tive, a multidimensional program is evaluated in an implicit context space in which its computation
values vary. Our first goal of program analysis is studying and collecting information on context
parallelism and dependence present among expressions in a multidimensional program. Then, we
use the result of the multidimensional program analysis to develop new scheduling strategies for
parallel tasks on an ADEM. In this research, we used an abstract dependence graph (ADG) since
using a dependence graph where a vertex represents a variable at a concrete context is impractical
due to space constraints. This ADG is used by the analyzer to capture and collect information on
parallelism and dependence to efficiently schedule parallel tasks onto the ADEM using a heuris-
tic scheduling algorithm. From the implementation perspective, using the result of the program
analysis, we investigate a prototype analyzer that takes a multidimensional program and produces
program dependence and other scheduling information. This information is used to identify par-
allel tasks in MP programs and determine how parallel tasks can be efficiently scheduled on the
ADEM. The result is a static and/or dynamic scheduling strategy. The experiments we conducted
show that the scheduling strategies substantially improve the performance when compared with
the performance of other parallel implementations of multidimensional programs.

A Fuzzy Feature Evaluation Framework for Network Intrusion De-
tection

By Iosif-Viorel Onut
Supervisor: Ali Ghorbani
Abstract
The design of a Network Intrusion Detection System (NIDS) is a delicate process which requires
the successful completion of numerous design stages. The feature selection stage is one of the
first steps that needs to be addressed, and can be considered among the top most important ones.
If this step is not carefully considered the overall performance of the NIDS will greatly suffer,
regardless of the detection technique, or any other algorithms that the NIDS is using. The most
common approach for selecting the network features is to use expert knowledge to reason about
the selection process. However, this approach is not deterministic, thus, in most cases researchers
end-up with completely different set of important features for the detection process. Furthermore,
the lack of a generally accepted feature classification schema forces different researchers to use
different names for the same (subsets of) features, or the same name for completely different
ones. It is our believe that these issues are not sufficiently studied and explored by the network
security research community. This thesis focuses on mining the most useful network features for
attack detection. Accordingly, we propose a new network feature classification schema as well
as a mathematical feature evaluation procedure that help us identify the most useful features
that can be extracted from network packets.The network feature classification schema is intended
to provide a better understanding, and enforce a new standard, upon the features that can be
extracted from network packets, and their relationships. The classification has a set 27 classes
of features based on the network abstractions that they refer to (e.g., host,network, connection,
etc). We use our feature classification schema to select a comprehensive set of 671 features for
conducting and reporting our experimental findings. The feature evaluation procedure provide a

106

deterministic approach for pinpointing those network features that are indeed useful in the attack
detection process. The procedure uses mathematical, statistical and fuzzy logic techniques to rank
the participation of individual features into the detection process. In particular, we propose a
new feature dependency measure for independent evaluation criteria that is, to our knowledge, a
pioneer method designed for intrusion detection. In our research we have identified several tuning
parameters that directly influence the detection performance of each individual feature. To address
this issue, our method takes into account the performance of each feature while using multiple
tunings, making the evaluation process more robust to biases that could be accidentally introduced
by a poor tuning combination. The experimental results, conducted on three different real-world
network datasets, empirically confirm that our feature evaluation model can successfully be applied
to mine the importance of a feature in the detection process.

107

Abstracts of 2008 MCS Theses

Generating Secure Elliptic Curves Over Binary Fields

By Peter Anderson
Supervisor: Rodney H. Cooper
Abstract
Elliptic Curve Cryptography is a form of public key cryptography that offers good security and
smaller key sizes then competing methods. The foundation of a secure elliptic curve cryptography
system is a well-chosen curve. There are many considerations when generating a curve, the main
one being its order. This is often the most costly part of an implementation of an elliptic curve
cryptography system and because of this much research has been completed in this area. This
thesis has two main goals. First, to offer a solid background in the mathematics of finite fields
and elliptic curves so that the reader will understand the advanced topics. Second, to explain and
demonstrate the requirements for choosing a secure elliptic curve, with an emphasis on finding the
order of the curve and avoiding known attacks.

A Combined Approach for Search of Learning Objects on the Web

By Hamidreza Baghi
Supervisor: Yevgen Biletskiy and Michael Fleming
Abstract
The present thesis describes a system for search and delivery of learning objects. This system
combines different methods of search: keyword- and concept based search and personalization. The
keyword- and concept-based search methods determine the relevance of each learning object to the
query. The personalized search of learning objects determines relevance of each document based
on a comparison of a learner (user) profile and learning object descriptions. Such a comparison is
based not only on the values of characteristics of the learner profile and attributes of the learning
object descriptions, but also the importance of these characteristics and attributes for the learner.
The relevance of learning objects to the learner query is determined using a combination of these
relevance measures. The approach is evaluated in order to demonstrate its effectiveness and find
optimal weighting coefficients.

Improving an OpenMP-based Circuit Design Tool

By Tim F. Beatty
Supervisor: Eric Aubanel and Kenneth Kent
Abstract
As transistor density grows, increasingly complex hardware designs may be implemented. In order
to manage this complexity, hardware design must be performed at a higher level of abstraction.
High level synthesis enables the automatic conversion of algorithms into hardware implementations,
abstracting away the underlying complexities of hardware from the designer. A number of high
level synthesis tools have recently been developed, including an OpenMP to Handel-C translator.
Improvements to the translator, including a new compiler directive allowing customizable register
width, are described. A set of benchmark tests show a decrease in circuit size and increase in
performance when the new compiler directive is used.

Computational Grid Emulation for Performance Analysis of Mesh
Partitioners

By Basile Clout
Supervisor: Eric Aubanel
Abstract
Mesh-based parallel applications, such as those involving numerical solution of partial differential
equations, can take advantage of the processing power of a computational grid. Such applications
require a partition, a mapping of the mesh onto the available processors, that optimizes the appli-
cation execution time. Good partitions can be created with heterogeneous mesh partitioners such
as PaGridL. However, mesh partitioners minimize a cost function that does not necessarily reflect
the real behavior of an application running a partition on a given computational grid. In order to
experimentally compare the quality of partitions created by different mesh partitioners, we imple-
mented Vlan, a heterogeneous computational grid emulator. Vlan can modify the virtual topology
of a network and degrade the processor and network performance of a cluster in an accurate, re-
producible and independent way. We used these emulated computational grids and a mesh-based
benchmark application to analyse and compare the performance of PaGridL with other mesh par-
titioners. The results show that PaGridL produces partitions of better or comparable quality than
other widely used mesh partitioners.

Incorporating Guideline Support Within an Online-Questionnaire
Design Tool

By Aaron Cooper
Supervisors: Joanna Lumsden and Jane Fritz
Abstract
Current online-questionnaire design tools do not provide adequate guidance to designers with re-
spect to best practices for online questionnaire design. To investigate, and thereby demonstrate,

109

how such essential support can be provided, we present a comprehensive case study which focuses
on a prototype we developed to incorporate Lumsdens online-questionnaire design guidelines into
an existing design tool. After systematically identifying a variety of possible support mechanisms
by which we could incorporate the guidelines as an integral part of the existing design tool, we de-
veloped a software prototype to demonstrate our selected methods (namely, a critic with a selection
of secondary support mechanisms) from both a user interface and architectural perspective. We
discuss what we did and decisions we had to make en route to achieving our prototype, reflecting
on our research in order to help guide/inform others faced with a similar task.

eTourPlan: A Knowledge-Based Tourist Route and Activity Plan-
ner

By Tshering Dema
Supervisors: Harold Boley and Przemyslaw Rafal Pochec
Abstract
Tourism is the worlds largest and fastest growing industry. There are many conventional tourism
service providers which are competitively trying to provide the best travel plans and recommenda-
tions to customers based on their interests. The Semantic Web is a major endeavour to enhance
the Web by enriching its content with semantic (meta)data that can be processed by inference-
enabled Web applications. eTourism is a prime candidate for such enrichment, since it is an
information-based business. As with any such business, providing the required relevant information
for the consumer means a better end product. Thus, providing a well-structured and comprehen-
sive Knowledge Base (KB) for consulting will help bolster eTourism business. In this thesis, we
have designed and implemented a KB consisting of tourism domain-specific information. Our KB
stores facts about Bhutan, which are structured by a light-weight ontology (adapted from the Har-
monise eTourism ontology) and used by partonomy rules that encode the geographical partitioning
of tourist regions and provide a basis for activity search capabilities. On top of these, the KBs plan-
ning rules are applied to deduce recommendations of routes, activities (attractions and events), and
accommodations. This thesis also discusses transferring Friend Of A Friend (FOAF) concepts for se-
mantically describing persons or organizations, to tourist-entity profiles. The FOAFlike Harmonise
relation relatedTo between tourist entities is used to chain through Bhutan provinces and attraction
profiles and is used to provide attraction-centric recommendations. This prototype, eTourPlan, an
eTourism planner using Semantic Web techniques has been implemented in RuleML/POSL as part
of this thesis. Results of running eTourPlan in the prototype RuleML engine OO jDREW are
reported.

Improving Responsiveness of Sensor Webs

By Ke Deng
Supervisor: Bradford G. Nickerson
Abstract
In this thesis, we present a sensor network programming platform using fuzzy logic.A fuzzy con-

110

troller model is used to dynamically control the rate of observation of environmental variables.
Differing rates arise from changing environmental conditions. Inferencing using linguistic rules pro-
vides a compact, human friendly way to represent the knowledge base for controlling environmental
sensor networks. Our platform is illustrated with a simulation having two rules and three environ-
mental variables. Our implementation and simulated experimental results show that it is feasible
to apply this programming model to wireless sensor networks. The power consumption overhead
of fuzzy SWL was approximately 15% when compared with Crossbows benchmark without fuzzy
SWL. the RAM and ROM usage of fuzzy SWL increased linearly as the number of rules increased.
A novel aspect of this research is the addition of time factors in the fuzzy rules. This permits the
fuzzy control system to better model and adapt to slowly changing environmental conditions.

An SSE-Component based Model for RNA Structure

By Mark James Dowe
Supervisor: Patricia Evans
Abstract
Abstract could not be copied

Investigating Resource Estimation for A High-Level Language

By Farnaz Gharibian
Supervisor: Kenneth B.Kent
Abstract
Compression and encryption algorithms are widely studied in transferring data over the networks
to satisfy the security and the speed of the data communication. However, the overheads of the
compression and encryption algorithms on data transformation have negative affects on real-time
data communication. We propose DecRO, a decryption/decompression engine that can be fit in
one FPGA. AES and LZ77 are used as decryption and decompression algorithms, respectively.
The implementation language for DecRO engine is Handel-C which supports the techniques such
as parallelism and pipelining. The implementation results show the efficiency of the engine in using
small number of resources while achieving real time performance. A resource estimation framework
for Handel-C is proposed based on our taxonomy in resource estimation algorithms. The proposed
framework helps high level programmers improve their design performances and decrease their
design development time. Our framework consists of two modules: global estimation and local
estimation. Global Estimation module focuses on the accuracy of the whole design process, while
Local Estimation is fast to facilitate optimization process.

Improved Competitive Learning Neural Networks for Network In-
trusion and Fraud Detection

By John Zhong Lei
Supervisor: Ali A. Ghorbani

111

Abstract
Along with the continuing growth of e-Commerce in North America, fraud and network intrusion
cost e-Commerce companies an overwhelming lost each year. Fraud detection and network intrusion
detection become more and more important to online e-Commerce business. However, data mining
techniques in this domain are facing the challenges of large scale and high skewness of the data,
missing and delay labels, and the continuing change of patterns. In this research, we develop two
new clustering algorithms, the Improved Competitive Learning Network (ICLN) and the Supervised
Improved Competitive Learning Network (SICLN), for the applications in the area of fraud detec-
tion and network intrusion detection. The ICLN is an unsupervised clustering algorithm applying
new rules to the the Standard Competitive Learning Neural Network(SCLN). In the ICLN, network
neurons are trained to represent the center of the data by a new reward-punishment update rule.
The new update rule overcomes the instability of the SCLN. The SICLN is a supervised clustering
algorithm further developed from the ICLN by introducing supervised mechanism. In the SICLN,
the new supervised update rule utilizes the data labels to guide the training process to achieve
a better clustering result. The SICLN can be applied to both labeled and unlabeled data and
is highly tolerant to missing or delay labels. Furthermore, the SICLN is completely independent
from the initial number of clusters because it is able to reconstruct itself according to the labels
of the cluster members. Experimental comparisons on both academic research data and practical
realworld data for fraud detection and network intrusion detection demonstrate that the SICLN
achieves high performance and outperforms traditional unsupervised clustering algorithms.

Service Oriented Architecture Implementation of OpenGIS Web
Processing Service

By Jingguang Li
Supervisor: Weichang Du
Abstract
Geographic Information Systems (GIS) incorporate graphical features with tabular data in order
to promote geographic results for spatial data problems. GIS Web Services are web based GIS
implementations that handle spatial data exchanging mechanisms over the World Wide Web. Open
Geospatial Consortium GIS (OpenGIS) Web Processing Service (WPS) is a web based service that
provides client accesses across a network to functions that operate on spatially referenced data.
The conventional OpenGIS WPS interface defines access operations (processes) to provide accesses
to other GIS applications and services on the web. GIS applications and services on the web
can be architectured as business services using service oriented web based Geographic Information
Systems. Restructuring OpenGIS WPS services with Service Oriented Architecture (SOA) can
provide a great opportunity to improve the conventional OpenGIS WPS systems with high quality.
This thesis investigates an SOA based new approach to developing OpenGIS WPS systems. The
thesis work includes a service oriented architecture for designing SOA based OpenGIS WPS systems,
an implementation framework to implement the service oriented OpenGIS WPS architecture, and
an application case study for a real-world service oriented OpenGIS WPS system based on the
design process and implementation framework. The evaluation and analysis of the SOA approach
compared with the conventional approaches shows that SOA based OpenGIS WPS systems provide

112

higher quality of services in many aspects, such as modifiability, and reusability.

Web Based Development Environment for GIS Map Services

By Sai Ma
Supervisor: Weichang Du
Abstract
A Geographical Information System (GIS) is a system that captures, analyzes, and manages spa-
tially referenced data. One common problem in the GIS community is how to generate and publish
customized web maps. The existing solutions either deal with spatial data directly which does not
allow applying the customized features, or requires and relies on advanced and specialized pro-
gramming skills. In this research, we use Asynchronous JavaScript and XML (AJAX) computing
technology to improve performance on viewing dynamic web maps. We apply Service Oriented
Architecture (SOA) to GIS systems to improve their interoperability using web service composition
technology to provide composite customized web maps. We implement a development environment
that builds the both AJAX and SOA based solutions as deliverable web based software systems.

Quality of Service (Qos) for video tranamission

By Shihyon Park
Supervisor: John M. Dedourek
Abstract
There is growing popularity of real time Internet traffic such as audio and video streams. However,
traditionally on the Internet, different types of traffic are not distinguished. When congestion
occurs, all traffic suffers the same impairments, e.g. increasing delay, more variable delay, and
packet loss. However, different types of traffic have differing sensitivities to these impairments.
In order to deal with these issues, QoS schemes have been proposed. The primary goal is to
provide a testbed and platform for investigating characteristic of real time Internet traffic on the
heterogeneous networks. QoS techniques for transmission of real-time video that use a DiffServ
mechanism that includes an efficient bandwidth agent to allocate bandwidth on heterogeneous
networks, a Hierarchical Token Bucket (HTB) queuing scheme at the output interface of Linux-
based routers, and a policing mechanism at the incoming interface of the edge router (ER) in a
Linux-based testbed. The characteristics of real-time video traffic using MPEG2 streaming video
and VLC for server/client so that we will have a good idea what bandwidth and burst size is required
to stream MPEG video through the QoS Diffserv domain. We set an efficient testbed to investigate
how real-time streams behave in the QoS scheme, and to provide a realistic recommendation to
manage the available bandwidth for both the QoS provider and clients. Tests were conducted with
interview.mpg (interview clip), soccer.mpg (sports clip), and card.mpg (entertainment clip). From
this test, a real-time streaming videos require a minimum amount of bandwidth, but other real-time
streaming videos require a certain size of burst to properly be transmitted.

113

On the role of temporal and spatial representations in light of ETS
formalism

By Benjamin Reuben Peter-Paul
Supervisors: Lev Goldfarb and Weichang Du
Abstract
The Evolving Transformation System (ETS) is a representational formalism for classification of real
world objects and their relationships. In ETS all objects are viewed and represented as processes.
ETS object representation, as a purely temporal representation, is a temporal sequence of structured
events called a struct. Compared to the conventional mathematical, i.e. spatial, representations,
it appears to be a primary form of representation, which can be spatially instantiated. Such
spatial instantiations can vary considerably, so that the temporal representation could be considered
as a more abstract and compact form of representation. This thesis investigates the connection
between temporal representation, central to ETS, and spatial representation, central to conventional
representational formalisms. To elucidate this connection, we develop and study a family of 3D
instantiations of temporal representations for the ETS class of objects called ”Bubble Man”. To
obtain the temporal representations for study, we develop a framework of ETS data structures and
algorithms, designed to simulate the ETS class element generation process (in a top-down manner).
Then we use a finite state transducer to simulate the physical instantiation of ETS temporal
representations. We conclude that spatial representation, offered by conventional formalisms, is
subordinate to temporal representation, such that, the information represented in the former may
be systematically reproduced from the latter.

Adjustable Autonomy in an Automated Negotiation Agent

By Atteeka Rashid
Supervisors: Michael Fleming and Scott Buffett
Abstract
For an agent negotiating for a suitable deal on a user.s behalf, uncertainty may arise as to whether
the user would find a particular offer acceptable. Given the ability to adjust its autonomy, the
agent could hand control over to the user instead of making a decision on its own of whether or
not to accept the offer, taking into account the benefits (e.g. making an acceptable deal) and costs
(e.g. user may not respond; meanwhile, other opportunities will be lost) that could result. The aim
of this thesis has been to develop a framework for an agent to reason about autonomy adjustment,
and in particular, to determine an optimal level of autonomy to adopt during negotiations. For a
given autonomy level, there is a trade-off between the assurance of making an acceptable deal that
can come with consulting the user, and the resulting constraints on the agent.s options in pursuing
the best possible deal. The approach taken involves formulating the problem of deciding which
offers to ask about and which to accept as a Markov Decision Process (MDP) for each possible
autonomy level, and then solving and simulating the MDPs to determine which level provides the
best trade-off. Tests on simulated data demonstrate that, with the developed framework, agent
performance can be improved in automated negotiation systems.

114

Managing Software Quality in Educational and Small Business En-
vironments

By Khaled Ali M Slhoub
Supervisors: Dawn MacIsaac and M Crease
Abstract
The purpose of this work was to propose a light-weight, learner-centric small-scale strategy for man-
aging software quality in educational and small business environments. The strategy is made up of
a development process, a set of quality metrics and a set of associated standards. The development
process is based on Agile practices. The quality metrics were generated via a goal-question-metrics
process and include metrics for tracking product and process quality, specifically risk, product
satisfaction, prototype suitability, prototype development duration, work week, productivity, effi-
ciency, defect density, and maintainability (with respect to coding standards and documentation
standards). Associated standards include benchmarks for each metric, and a set of documentation,
coding, and logging procedures. A framework for a tool which supports the metric tracking was
also developed. The framework, called the Software Quality Resource Tool (SQRT), was designed
and implemented as part of a standard eclipse development environment to accept plug-ins which
monitor the metrics proposed in the strategy. To demonstrate this utility, a module for complete
automated tracking of prototype suitability was designed and implemented.

An Opportunistic Communication Paradigm for Cyber-Engineering

By Mohsin Sohail
Supervisor: Mihaela Ulieru
Abstract
This work is an integral part of the research on eNetworks as infrastructures for the future Cyber-
Physical Ecosystems carried on in the Adaptive Risk Management (ARM) Laboratory at UNB.
Within this broader context, the aim of my research is to show practically a proof of concept for a
network architecture based on Mobile Code for Weisers vision of ubiquitous computing and oppor-
tunistic computing on Wireless Sensor Networks (WSN). The concept of ”network architecture” is
very abstract; it defies rigorous analysis and thorough simulation, and is best understood through
experimentation in a realistic environment. Therefore, I plan to design an integral component of the
ARM testbed which deals with the integration of new and evolving pervasive networks, namely the
Wireless Sensor Networks (WSN) composed of Motes, complemented with another mobile network
composed of cell phones, smart phones and/or PDAs. The need for this integration is imminent
given the bottlenecks which pose challenges for the current Internet. Additionally, expectations
that the Future Internet will be more than simply a source of knowledge through end-to-end con-
nectivity but also an interface between us and our surrounding physical world, calls for a radical
transformation of the current Internet. The proposed paradigm in my thesis will provide an oppor-
tunity to enhance both mobile and wireless sensor networks by leveraging on each other through
novel applications for home and industrial automation. In addition, the proposed paradigm will
serve as a foundation for future investigation of interdependencies among heterogeneous large scale
networks.

115

Security and Asynchronous Javascript and XML (AJAX): Assess-
ing the Vulnerability of a Simple AJAX Deployment to a JAVASCRIPT
Hijacking Attack

By Elliot Sullivan
Supervisor: Dawn MacIsaac
Abstract
No abstract.

Multi-level Online Learning

By Biao Wang
Supervisor: Bruce Spencer and Huajie Zhang
Abstract
Online recommendation techniques are widely used to improve users’ response rates in interactive
online marketing. Although some machine learning schemes, e.g., nave Bayes, have been successfully
employed for this purpose, each scheme has its advantages and disadvantages. Online learning
schemes provide another practical approach to online recommendation, in which a classifier is
learned incrementally from examples, interleaving predicting and training. Online learning comes
into play when we have repeated interactions. In each iteration, it accepts a request for prediction
of a given example, makes a prediction, and observes the true label of the example, and the
model is updated to improve later predictions if the observation disagrees with prediction. Online
learning can be useful for interacting with people. For example, in online recommendation, although
the users’ tastes usually remain a constant for a long period of time, their interests may change
frequently. In our setting we want to allow the user’s evaluation of an object to change during
the interaction as we track that changing opinion. Thus, it is necessary to employ an online
learning scheme when we observe their changing ratings on objects. In real-world applications,
although binary data is sometimes used to represented quantity, it is too coarse in most situations.
Multi-level comes into play when we want to predict the multi-level response from a user, for
example, multi-level data is required when we want to predict the degree of appreciation a user
may have for an object. Therefore, online learning with multi-level predictions while interacting
with users is our goal. In this thesis, after presenting to the readers a detailed survey of online
learning, linear classification models, and online recommender systems, we propose a multi-level
online learning scheme called MWinnow, which is expected to be not sensitive to the curse of
dimensionality and have good behavior in the presence of irrelevant attributes, noise, and even a
target function changing in time. It is very cheap to implement and can be efficiently applied to
online recommender systems. We perform experiments to systematically evaluate the performance
of the MWinnow scheme using nave Bayes as the baseline scheme. The results show that MWinnow
is at least competitive with nave Bayes and even significantly outperforms it in some circumstances
in terms of prediction quality and real-time performance. The MWinnow scheme is promising for
future applications, especially as a recommendation scheme.

116

A Novel Protocol Suite for the Virtual Home Environment in Het-
erogeneous Networks

By Xi Yuan
Supervisor: Bernd J. Kurz and John DeDourek
Abstract
As the demand for mobile Internet access increases, the concept of Virtual Home Environment
(VHE) was introduced to provide the mobile users with consistent access to the value added ser-
vices they have subscription to while they roam. While the requirements for providing VHE in
homogenous networks have been gradually clarified by recent research, the introduction of the
consumer-based model, in which the mobile users are no longer associated with fixed network ac-
cess service providers with long term contracts, raised the new challenge of providing VHE across
heterogeneous networks. As the first step towards providing a complete VHE solution in the het-
erogeneous network environment, a third-party authentication/authorization protocol called VHE
Session Authentication Protocol (VHESAP) has been developed as the foundation of other VHE
modules. To enable easy protocol implementation and modification, the General Signaling Protocol
Interface (GSPI) was developed, featuring a rich set of highly modularized protocol design tools.
Using the GSPI implementation of VHESAP, both of CBM and SBM environments are simulated
in the lab to evaluate their influence on the protocol performance.

Dynamic Clustering of Large Scale Data Using Random Sampling

By Reza Zafarani
Supervisor: Ali A. Ghorbani
Abstract
Clustering is the unsupervised partitioning of feature vectors into subsets of similar objects. In
this thesis, a new framework for clustering large scale datasets based on random sampling is pro-
posed. The framework addresses well known challenges in clustering such as Dynamism, High
Dimensionality, Stability, and Scaling. The core of the proposed framework is based on scaling
known clustering algorithms for large scale datasets. Furthermore, this algorithm is also equipped
with a novel technique for determination of the optimal number of clusters in datasets. These
properties add the capabilities of reducing the effect of high dimensionality and scale in datasets
to this algorithm. Various experiment have been conducted to analyze the performance of the
framework. These experiments are dedicated to the justification of different decisions taken in the
design process of the algorithm as well as determining the optimal values of algorithm’s parameters
and evaluating the clustering algorithm. The experimental results show that the algorithm is not
only capable of determining the optimal number of clusters accurately but is also competitive in
predicting the true cluster labels.

117

Assisting Interoperability between Learning Objects and Learners
in an E-Advising Scenario

By Luqian Zhu
Supervisor: Dawn MacIsaac and Yevgen Biletskiy
Abstract
Integrating information from diverse heterogeneous environment is a challenging task. To solve the
incompatibility problem between educational materials created within varying cultural contexts is
especially important for e-Learning environments. The rapid development of e-Learning technolo-
gies provides access to a large amount of online learning materials, often wrapped as XML-based
learning objects, which originate from multiple cultural backgrounds. However, since knowledge
is represented on a global scale, different contexts and incompatibilities between learning objects
often create barriers for users, so that limits their exchange efficiency. In this thesis, we focus on as-
sisting Learning Object interoperability in an electronic academic advising (e-Advising) scenario by
using Semantic Web techniques and context mediation approach. The experiments and evaluation
conducted in translating student’s transcript between different schools show that the knowledge
representation model and mediation approach we propose can be successfully applied in e-Advising
systems.

118

Author-index

Arp, John-Paul 11
Bahrami Samani, Emad 85
Bediako-Asare, Henry 82
Boley, Harold 72
Buffett, Scott 82, 87
Cha, Sangwhan 83
Du, Weichang 42, 72, 83, 84
Ensan, Faezeh 84
Evans, Patricia A. 85
Fleming, Michael 82, 87
Geng, Liqiang 12
Gharibian, Farnaz 1
Ghorbani, Ali 57, 65, 90, 91, 92
Hamilton, Bruce 12
Hosseini, Hadi 88
Kent, Kenneth B. 1, 21, 32
Kiani, Mahsa 57
Kurz, Bernd J. 83
Le, Thuy T. T. 86
Li, Minruo 87
Libby, Joey C. 21, 32
Lu, Cheng 49
Lu, Wei 57, 65, 90
Lutes, Jonathan P. 32
Nasser, Valeh H. 42
Nickerson, Bradford G. 86
Noorian, Mahdi 89
Noorian, Zeinab. 88, 89
MacIsaac, Dawn 42
Ren, Hanli 90
Shiravi, Ali 91, 92
Shiravi, Hadi 92
Stakhanova, Natalia 90
Tavallaee, Mahbod 57, 65
Zhao, Jidi 72

119

ISBN 978-1-55131-134-0

