
Effective Query Selection during Preference Elicitation
Minruo Li1, Michael Fleming1, Scott Buffett2

1. Faculty of Computer Science, University of New Brunswick

2. National Research Council of Canada

Objective

1. Construct the COP-net
2. Estimate user’s utility of each outcome using an existing method (longest path method)
3. Generate query graph and find all possible queries (unknown preferences)
4. Weight each query
5. Ask one or more queries with highest weight
6. Re-construct the COP-net and re-estimate user’s utility of each outcome
7. Simulate the negotiation process

Methodology

One of the problems in conducting automated negotiation is that of maximizing the
utility of the user being represented. However, the agent conducting the negotiation
typically will not have prior knowledge of the user’s true utility for every outcome. This
project tries to find an efficient and accurate way for the agent to estimate the user’s
utility for each outcome and use this estimated utility when making decisions during
the negotiation process.

Background – COP-nets

Query Selection with COP-nets

A Conditional Outcome Preference Network (COP-net) is a graphical model used to represent
a user’s preferences over a set of outcomes [1].

A COP-net is a directed acyclic graph consisting of a set of nodes and a set of directed
edges.
Each node denotes an outcome and each directed edge represents a preference.
COP-nets are transitively reduced graphs.
A COP-net has a small number of nodes with a prior labeling of known utilities for the user,
which are known as true utilities and will then be used, along with the known preferences,
to estimate the utilities of the rest of the nodes for the user.

v0

v5

v4

v2
v1

v3

v0

v5

v4

v2v1

v3

Our goal is to find some currently unknown preferences that would be the most useful to the
agent. This can be modeled with the COP-net as well. The procedure for finding all unknown
preferences using a COP-net is summarized as follows:

Find the transitive closure CTC of a COP-net
“Undirect” the graph, by converting arcs to undirected edges
Find the complement C’TC , which is referred to as the query graph
Each edge in the resulting graph represents an unknown preference or a query

Weighting Scheme

We would like to ask queries that reveal a high number of unknown preferences and that
involve outcomes that are more likely to be interesting for both the user and the opponent. In
one proposed method, the steps for calculating the weight for each edge in the query graph
are described as follows:

Let oi be the outcome represented by vi in the query graph
Let (vi, vj) be an edge in the query graph
Let Pi>j be the set of preferences that would be learned if the user specifies oi > oj,
including oi > oj

Let Ei>j represent the set of edges that would be removed from the query graph as a
result
Let u(oi) and uopp (oi) be the agent’s estimates of the user’s and the opponent’s utilities for oi

Compute weight of (vi, vj) by the formula:

1

0

0.90 0.67
0.10 0.33

0.45 0.33
0.55 0.67

0

1

1

0.90 0.65

0.60 0.30

0

Testing – Negotiation process
Both the user and the opponent will give an offer that maximizes their own utilities and accept
an offer only when their utility for the offer reaches some acceptance point.

(Accepting point = 0.40)

The negotiation process will be conducted
with different weighting schemes. At the end
of each negotiation process, we will measure
the user’s true utility of the accepted offer and compare the results obtained from the use of
several different query weighting methods.











































ijlk

jilk

Evv

lopplkoppk

Evv

lopplkoppk

ji

vuvuvuvu

vuvuvuvu

vvw

),(

),(

,

)),()()()((

)),()()()((

min)(

Outcomes User’s

True

Utility

User’s Estimated

Utility

Opponent’s

True

UtilityWithout
asking

queries

After
asking

queries
v0 1 1 1 0
v1 0.85 0.90 0.80 0.20

v2 0.50 0.60 0.55 0.40

v3 0.30 0.50 0.25 0.70

v4 0.20 0.40 0.15 0.85

v5 0 0 0 1

References

[1] S. Chen, S. Buffett, and M. W. Fleming. Reasoning with Conditional Preferences across Attributes. 2007. The 20th
Canadian Conference on Artificial Intelligence May 28, 2007.

v0

v1 v2

v3 v4

v5

v0

v1 v2

v3 v4

v5

Weight(v1, v2) = min{0.90*0.10*0.67*0.33
+ 0.90*0.10*0.33*0.67,
0.67*0.33*0.90*0.10
+ 0.67*0.33*0.45*0.55}

= 0.0398
Weight(v1, v4) = min{0.90*0.10*0.33*0.67,

0.33*0.67*0.90*0.10
+ 0.33*0.67*0.45*0.55}

= 0.0199
Weight(v3, v4) = min{0.45*0.55*0.33*0.67

+ 0.90*0.10*0.33*0.67,
0.33*0.67*0.45*0.55

+ 0.67*0.33*0.45*0.55}
= 0.0746

Weight(v2, v3) = min{0.67*0.33*0.45*0.55,
0.45*0.55*0.67*0.33
+ 0.45*0.55*0.33*0.67}

= 0.0547• user’s estimated utility
• opponent’s estimated utility

Negotiation without
asking queries:

- The user offers v0

-The opponent rejects

and offers v5

-The user rejects and

offers v1

- The opponents

rejects and offers v4

- The user accepts v4

Final utility achieved:
0.20

Negotiation with
asking queries:
- The user offers v0

-The opponent rejects
and offers v5

-The user rejects and
offers v1

- The opponents
rejects and offers v4

- The user rejects and
offers v2

- The opponent accepts v2

Final utility achieved:
0.50

