

Bruce Hamilton and Liqiang Geng

National Research Council of Canada

Institute for Information Technology

Process Mining refers to the automated discovery of process models

from event logs. It can be applied to auditing software processes or

discovering workflow tendencies. Our method uses a new approxi-

mation algorithm for testing the conformance between process mod-

els and their corresponding event logs.

Given a process model and an instantiation of the process, our algo-

rithm will approximate the most likely path in the model. Our

method extends on the heuristic search used in [1] by incorporating

concurrency. Incorporating concurrency requires maintaining a list

of current execution points, or places. With this new addition, proc-

ess instances may be approximated for all process models (i.e. Petri

nets, finite state machines, heuristic nets).

 The minimal-cost approximation algorithm can be used to give de-

tailed reports to developers or administrators about the discrepan-

cies in process execution. Our motivation is to use these reports to

give administrators insight into employee workflow so that security

threats may be reported.

 Reports can be in the form of visual representations (see visual im-

plementation), or conformance metrics (see results).

Using a set of noisy logs from [2], we show how the algorithm can dis-

play statistics on the conformance between a process model and its

corresponding event logs.

Model Noise k Mean Std dev Max Min (>k) Fitness Time (ms)

A12 5.00% 5 1.53 1.42 4 0 0 0.735 40.60
 4 1.53 1.42 4 0 0 0.735 11.99
 3 0.82 1.60 2 0 3 0.765 9.02
 2 0.82 1.24 2 0 3 0.796 5.61

 1 0.24 1.31 1 0 8 0.878 4.01

 10.00% 5 1.71 1.30 4 0 0 0.698 17.79
 4 1.71 1.30 4 0 0 0.698 15.51
 3 1.00 1.49 2 0 5 0.730 13.35
 2 1.00 1.14 2 0 5 0.761 8.59

 1 0.29 1.34 1 0 15 0.855 5.79

BN1 5.00% 5 2.00 1.91 5 0 0 0.942 1410.71
 4 1.62 1.96 4 0 1 0.944 865.94
 3 0.38 2.41 2 0 5 0.955 219.62
 2 0.38 1.79 2 0 5 0.966 78.11

 1 0.23 1.32 1 0 6 0.980 16.62

 10.00% 5 1.90 2.22 5 0 4 0.921 4974.37
 4 1.55 2.12 4 0 6 0.928 1272.91
 3 0.72 2.32 3 0 12 0.940 275.18
 2 0.41 1.97 2 0 15 0.956 100.56

 1 0.28 1.40 1 0 17 0.974 20.32

Herbst 5.00% 5 0.35 0.83 4 0 0 0.975 11.87
3.4 4 0.35 0.83 4 0 0 0.975 11.30
 3 0.25 0.84 2 0 1 0.976 12.11
 2 0.25 0.73 2 0 1 0.978 10.62

 1 0.10 0.68 1 0 4 0.985 9.62

 10.00% 5 0.58 0.93 4 0 0 0.955 14.66
 4 0.58 0.93 4 0 0 0.955 14.44
 3 0.50 0.93 3 0 1 0.956 15.60
 2 0.44 0.87 2 0 2 0.959 14.75

 1 0.20 0.83 1 0 8 0.972 11.96

Herbst 5.00% 5 0.10 0.54 4 0 0 0.993 61.91
6.37 4 0.10 0.54 4 0 0 0.993 78.69
 3 0.04 0.55 2 0 2 0.994 69.57
 2 0.04 0.44 2 0 2 0.995 34.95

 1 0.01 0.36 1 0 4 0.997 33.70

 10.00% 5 0.24 0.76 4 0 0 0.983 86.24
 4 0.24 0.76 4 0 0 0.983 91.25
 3 0.16 0.76 3 0 3 0.984 79.97

 2 0.14 0.67 2 0 4 0.986 40.18
 1 0.04 0.58 1 0 11 0.992 35.95

Fig. 1: A12 Model

Fig. 2: BN1 Model

Fig. 3: Herbst Fig. 3.4

Fig. 3: Herbst Fig. 6.37

Using the approximation algorithm, we can give visual reports to ad-

ministrators on the most likely paths for a given process instance. In

the figure below, we show an execution of the event sequence, “A, B,

L”. The set of solutions be-

low k cost are listed, then

the user may select a path

to highlight in the graph

visualization in the bottom

frame of the GUI.

 This implementation

was programmed in Java,

along with an extension

program for laying out

graphs developed at AT&T

Measure Formula

Given a max cost k, and an event log P, consisting of process instances
pi and events e, where cost(pi) returns the cost of the lowest approxima-
tion of pi.

Mean

Std Dev

Max

Min

Fitness

The table to the left shows the measures

used, and the table below shows the results

using the process models shown (as Petri

nets).

We have developed a working algorithm for discovering the most

probable sequence of transitions to be taken in a process model,

given a process instance. The algorithm has been shown to be appli-

cable as a basic metric for determining the conformance between a

process model and an event log, and has been proposed as a highly

descriptive way for determining common faults in a log or model.

[1] Jonathan E. Cook and Alexander L. Wolf. Software process validation: quantitatively
 measuring the correspondence of a process to a model. ACM Transactions on Soft
 ware Engineering and Methodology, 8:147–176, 1999.

[2] A.K. Alves de Medeiros. Genetic Process Mining. PhD thesis, Eindhoven University of
 Technology, 2006.

Introduction

Our Approach

Visual Implementation

Results

Conclusion

References

