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Abstract
The global rise in road traffic accidents presents substantial chal-
lenges across economic, societal, and public health domains, leading
to millions of injuries and fatalities annually. Current studies on
modeling and analyzing traffic accident frequency largely treat the
issue as a classification task, primarily utilizing learning-based or
ensemble methods. However, these approaches frequently neglect
the intricate relationships among the multifaceted factors—such as
road complexity, environmental conditions, driver behavior, and
contextual elements—that contribute to traffic accidents and haz-
ardous scenarios. We propose an approach that employs causal
inference and causal Machine Learning (ML) techniques to pre-
dict accident severity and identify key causal factors. We evaluate
our proposed approach with two datasets, from Ethiopia and UK.
Given the inherent imbalance in these datasets, the Synthetic Mi-
nority Oversampling Technique (SMOTE) is utilized to achieve
balanced data representation. Uplift modeling and causal inference
methods are employed for severity prediction. Individual Treat-
ment Effect (ITE) and Average Treatment Effect (ATE) are used to
make interpretations of the predictions. Our research contributes
to understanding and mitigating the impact of road traffic accidents
through advanced causal analysis techniques, offering actionable in-
sights for policymakers, urban planners, and public health officials
globally.

CCS Concepts
• Computing methodologies→ Feature selection;Machine
learning;Artificial intelligence; •Applied computing→Trans-
portation.
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1 Introduction
Road Traffic Accidents (RTAs) are a major global concern, result-
ing in millions of deaths and injuries annually. The 2018 Global
Status Report on Road Safety reports a staggering 1.35 million
RTA-related deaths each year [21]. To address this, various studies
utilize predictive analytics to derive insights from crash data, en-
abling identification of patterns and key predictors for accidents
[11, 25, 32, 37]. This includes classification algorithms, which un-
cover complex relationships among variables like infrastructure,
driver behavior, and environmental factors, offering clues to reduce
fatalities. Crash reports, generated after accidents, are rich in data,
containing textual descriptions, figures, and numerical information
to reconstruct events. These reports provide a complex interplay
of factors—including infrastructure, behavior, environmental con-
ditions, and vehicle attributes—that contribute to accidents [33].
However, the diversity and interconnection of these factors make
it challenging to analyze causal relationships effectively. Tradition-
ally, researchers have framed accident prediction as a classification
task, applying machine learning (ML) algorithms to summarize
and predict crash outcomes using predefined features [16, 29, 35].
While this approach has yielded significant insights, converting
detailed textual data into numerical values can oversimplify and
ignore crucial relationships among variables. Moreover, the quality
of crash predictions depends heavily on data reliability and feature
selection, as key predictors are essential to improve model accuracy.
Few studies have incorporated causal inference in crash severity
prediction [6, 12]. This research seeks to fill this gap by applying
causal ML methods to accident data from Ethiopia and the UK,
estimating causal effects and identifying key severity-influencing
factors [8, 10, 13, 41]. Previous works, such as Aldhari et al. [2],
relied on SHAP analysis to interpret feature importance, which may
not capture variations in feature significance across different con-
ditions, such as lighting and road type. Additionally, Chakraborty
et al. [6] used Granger causality to select features, but this ap-
proach could miss specific factors critical to severe crashes [30].
Causal inference integrated with ML [41] offers a powerful alterna-
tive by focusing on cause-and-effect rather than mere correlations.
Through estimates like Average Treatment Effect (ATE) and Individ-
ual Treatment Effect (ITE), causal inference can provide actionable
insights, showing how specific interventions could lower accident
rates. This approach can enhance traffic safety by learning from
complex, unstructured accident data, providing precise guidance
for accident prevention. We propose an approach based on causal
inference and causal ML for RTE severity prediction. We leverage
the CausalML [18] Python package for advanced ML algorithms for
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uplift modeling and causal inference. Our proposed approach en-
sures that predictions are not only statistically significant but also
causally meaningful, leading to more effective and targeted accident
prevention strategies. The potential applications of the proposed
model extend beyond prediction, offering a versatile tool for stake-
holders to make informed decisions, allocate resources efficiently,
and implement targeted interventions, ultimately enhancing road
safety. The primary contributions of this paper are:
• Analyzing unstructured accident data for both UK and Ethiopia
• Utilizing causal inference and ML to predict road accident
injury severity in Ethiopia and UK.
• Investigating ITE and ATE to identify factors contributing
to road accidents.
• Re-training the respective machine learning models with the
most significant features and comparing its performance to
the original model.

By performing this analysis and using causal ML, our study seeks
to provide deeper insights into the factors affecting road accident
severity, thereby contributing to the global effort to improve road
safety. This paper is structured as follows: Section 2 reviews lit-
erature on causal inference and ML. Section 3 presents a compre-
hensive review of road accident prediction. Subsequent sections
cover problem definition, proposed approach, dataset and analysis,
evaluation, discussion, and concluding with Section 9.

2 Background
This section provides a background in causal inference, focusing on
how to estimate treatment effects, specifically the Average Treat-
ment Effect (ATE) and Individual Treatment Effect (ITE), using
experimental or observational data. It introduces key concepts such
as treatment variables, covariates, and outcome variables, and de-
scribes how ITE and ATE are mathematically defined to quantify
the causal impact of interventions.

2.1 Causal Inference
Causal ML provides tools to estimate the Average Treatment Effect
(ATE)[23] , or Individual Treatment Effect (ITE) [1], from exper-
imental or observational data. Specifically, given co-variates𝑊 ,
it quantifies the causal effect of intervention 𝑇 on outcome 𝑌 for
individuals characterized by observed features 𝑋 , 𝑋 ⊆𝑊 , with-
out imposing strict assumptions on the model’s structure. Figure 1
shows an example of causal graph.

Figure 1: Example of a causal graph [38]

where,

• Treatment effect (T): Change in outcome if there is some
change in the treatment variable.
• Covariates (W): Variables that are related to both treatment
and outcome.
• Outcome(Y) : Output
• Independent variables, X ⊆W

By treating all the features as a treatment variable, one by one, two
types of treatment effects are calculated:

(1) Average Treatment Effect (ATE)
(2) Individual Treatment Effect (ITE).

2.2 Individual Treatment Effect (ITE)
ITE [36] for a particular feature shows the treatment effect for all
the instances of the feature. The range for the treatment effect
value is between 0 and 1. For no treatment, the value is 0. The
Individual Treatment Effect (ITE) for a particular feature can be
mathematically expressed as follows:

ITE(𝑥𝑖 ) = 𝑃 (𝑌 |𝑇 = 1, 𝑋 = 𝑥𝑖 ) − 𝑃 (𝑌 |𝑇 = 0, 𝑋 = 𝑥𝑖 )
where:
• ITE(𝑥𝑖 ) represents the Individual Treatment Effect for the
𝑖-th class of the feature 𝑥 .
• 𝑃 (𝑌 |𝑇 = 1, 𝑋 = 𝑥𝑖 ) is the probability of the outcome 𝑌 given
the treatment 𝑇 = 1 and feature 𝑋 = 𝑥𝑖 .
• 𝑃 (𝑌 |𝑇 = 0, 𝑋 = 𝑥𝑖 ) is the probability of the outcome 𝑌 given
no treatment 𝑇 = 0 and feature 𝑋 = 𝑥𝑖 .

The treatment effect value ranges between 0 and 1, with a value
of 0 indicating no treatment effect.

2.3 Average Treatment Effect (ATE)
ATE [36] for a particular feature is derived by calculating mean of
ITE values for that feature. The feature with the highest ATE value,
may have the highest causal effect for that given treatment variable.
ATE for a particular feature is derived by calculating the mean of
ITE values for that feature. It can be mathematically expressed as
follows:

ATE(𝑥) = 1
𝑁

𝑁∑︁
𝑖=1

ITE(𝑥𝑖 )

where:
• ATE(𝑥) represents the Average Treatment Effect for the fea-
ture 𝑥 .
• 𝑁 is the number of classes or instances of the feature 𝑥 .
• ITE(𝑥𝑖 ) is the Individual Treatment Effect for the 𝑖-th class
or instance of the feature 𝑥 .

3 Literature Review
Recent advancements in crash severity prediction have focused
on applying machine learning and big data analysis. Najada et al.
[15] analyzed accident causes using Hong Kong’s transportation
data, finding Random Forest superior to Naïve Bayes and PART
algorithms. Similarly, Richard and Ray [26] utilized big spatial data
to study accidents in Fredericton and Laval, Canada, identifying
key factors like weather, vehicle count, and accident type. Their
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approach integrated big data and spatial analysis to model accident
severity, though data inconsistencies between cities limited find-
ings. Hamzah Al et al. [20] emphasized pre-processing to improve
data reliability, noting common challenges like data imbalance in
injury severity predictions, which are typically framed as binary
classification problems [16, 29, 35] or sometimes as multiclass clas-
sifications [19, 22]. Additionally, text data in crash reports [17] can
aid predictions but may result in information loss when converted
numerically. Techniques such as SVM [39, 40], Logistic Regression
[3, 5], and Bayesian networks [7] face bias from data imbalance. In
Ethiopia, studies [9, 34] emphasize statistical methods and Decision
Trees, highlighting a need for robust studies. Further, Hu et al. [12]
proposed a Granger causality and Graph Convolutional Network
method to improve crash risk prediction, enhancing interpretability
through causal inference.
There is still enough room for improvement, as these studies do not
explain causal relations between the features after the prediction.
In a previous work [31] researchers applied causal inference for rail
transit delay prediction. To our knowledge, this is the first work to
utilize causal ML for accident severity prediction.

4 Problem definition
Causal ML (CML) approaches aim to help discover cause-and-effect
relationships from observational data, which can provide deeper
insights into the factors influencing accident severity. The prob-
lem of predicting accident severity can be mathematically framed
as a supervised multi-class classification task. The function 𝑔 is
trained on a subset Dtrain and evaluated on subsets Dtest and
Dvalidate. The objective is to find the optimal function 𝑔∗ that
minimizes a loss function L over the training data, expressed as
𝑔∗ = argmin𝑔 L(Dtrain, 𝑔), with cross-entropy loss commonly
used for such tasks. The prediction for a new instance xnew is given
by 𝑧pred = 𝑔∗ (xnew), and the model’s performance is evaluated on
Dtest using metrics such as ITE and ATE.

5 Our proposed approach
Figure 2 illustrates the proposed model. In Step 1, raw traffic acci-
dent data is pre-processed for efficiency. Step 2 applies sampling
techniques to address class imbalance in accident severity. In Step
3, the data is divided into components X (covariates), Y (outcome),
and T (treatments). After pre-processing, the dataset is trained us-
ing an uplift tree classifier, and ITE and ATE scores are calculated
to identify top features for model retraining. Figure 3 shows the
causal graph for accident prediction, where Y = Outcome (accident
severity), X = Covariates (weather, address, road, driver, vehicle), and
T = Treatment (spatial, temporal). Algorithm 1 outlines a procedure
for processing and analyzing data using causal machine learning
techniques. It starts by loading and pre-processing data, handling
missing values, and converting categorical variables to binary. Next,
it addresses class imbalance through resampling techniques like
SMOTE. The data is then split into covariates, outcome, and treat-
ment variables for model training using an uplift tree classifier.
Feature analysis involves calculating individual and average treat-
ment effects (ITE and ATE) to identify significant features. The
model is then retrained using these top features, and its accuracy

Step 3

Causal feature engineering

X

YT

Accident 

dataset Data pre-processing

Step 1

Data sampling

Step 2

Model building and 

training

Step 4
ATE

(Average Treatment Effect)

ITE

(Individual Treatment Effect)

Step 5

Feature Analysis

Retrain model with top 

selected features

Step 6

Figure 2: Proposed model
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Accident severity

X = Features
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Road

Driver
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Causal ML

X

YT

Accident data

Figure 3: Causal graph for accident prediction

is evaluated. This structured approach ensures robust and inter-
pretable causal insights. Detailed steps are explained in Sections
5.1, 5.2, 5.3 , 5.4, 5.5, and 5.6.

5.1 Data pre-processing
The first step is to clean and organize the raw accident dataset. This
process may include handling missing values, removing duplicates,
normalizing features, and encoding categorical data, to ensure the
dataset is ready for analysis.

5.2 Data sampling
After pre-processing, the dataset is sampled to select representative
data points. This step can involve splitting the data into training,
validation, and testing sets, or balancing the dataset if it has class
imbalances. SMOTEwas used to balance the data by generating syn-
thetic samples, creating interpolations of minority class instances
to improve representation and support effective model training.

5.3 Causal feature engineering
This step focuses on identifying causally relevant features. It in-
volves creating variables 𝑋 , 𝑇 , and 𝑌 where:
• 𝑋 : Variables that are related to both treatment and outcome
variables.
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Algorithm 1 Prediction of traffic accident severity using causal
ML
1: Data Pre-processing
2: Load data:

𝐷 ← load_data(”𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡_𝑟𝑒𝑐𝑜𝑟𝑑𝑠.𝑐𝑠𝑣”)
3: Handle missing values and convert categorical to binary:

𝐷′ = one_hot_encode(𝐷)
4: Data Sampling
5: Address class imbalance:

𝑟 =
𝑛minor
𝑛total

6: Apply SMOTE:
𝐷balanced = SMOTE(𝐷′)

7: Model Training
8: Train uplift model:

𝑓 (𝑋,𝑇 ) ← UpliftTreeClassifier(𝑋,𝑌,𝑇 )
9: Feature Analysis
10: Calculate ITE and ATE. Select top features:

𝐹top = {𝑓 | ATE(𝑓 ) > 𝜏}
11: Model Retraining
12: Retrain model with top features:

𝑓retrained ← UpliftTreeClassifier(𝑋𝐹top , 𝑌 ,𝑇 )
13: Evaluate model accuracy.

• 𝑇 : Treatment variable.
• 𝑌 : Outcome variable.

Causal relationships are established among these features to
understand the impact of interventions or treatments on outcomes.

5.4 Model building and training
In the next step, an uplift tree classifier [28] is applied to train
the dataset. Specifically designed for causal modeling, this classi-
fier maximizes outcome differences between treated and untreated
groups, enabling a clearer analysis of causal effects. By comparing
projected outcomes for individuals who receive the intervention
with those who do not, this approach enhances understanding of
the treatment’s impact. The Uplift Tree Classifier, available
in the CausalML library, estimates Individual Treatment Effect (ITE)
and Average Treatment Effect (ATE) at the subgroup level, allowing
for a more precise assessment of feature contributions to treatment
outcomes and improving causal inference accuracy. Key concepts
of uplift tree classifier are mentioned next:

(1) Treatment and Control Groups: The dataset is divided
into two groups—one receiving the treatment and the other
as a control group. The classifier predicts the differential re-
sponse or "uplift" that the treatment induces on the outcome.

(2) Splitting Criteria: Uplift trees use specific splitting criteria
to maximize the difference in responses between the treat-
ment and control groups rather than the standard decision
tree criteria (like Gini or entropy). There are various ways
to measure this difference:
• DeltaDeltaP (ΔΔ𝑃): This criterion maximizes the differ-
ence between the probabilities of a positive outcome in
the treatment and control groups across branches of a split
[27].

• DivergenceMeasures: Alternatives like Kullback-Leibler
(KL) divergence [14] and Euclidean distance are also used
to enhance splits where treatment and control outcomes
diverge significantly.

(3) Tree Construction: Each split attempts to separate the
population into branches where the treatment effect is maxi-
mized in one direction (e.g., positive uplift) and minimized
in the other (e.g., no uplift or negative). Nodes in the tree
are created based on criteria that account for the difference
in response distributions between treatment and control
branches. This enables the identification of population sub-
groups that exhibit varying degrees of sensitivity to the
treatment.

(4) Evaluation of Uplift: Uplift is typically evaluated through
uplift curves and metrics such as the Area Under the Uplift
Curve (AUUC) [27]. These metrics assess how effectively the
model segments the population by incremental response.

5.5 Feature analysis
The purpose of feature analysis is to quantify how each feature,
when varied, impacts accident severity. This is particularly useful in
causal models, as it allows us to go beyond correlation to understand
causation. For example, factors like road surface conditions, driver’s
age, and weather could have distinct causal impacts on accident
severity, which is captured through their ATE or ITE values. To
calculate ITE, for each feature in the dataset, we treat that feature as
the treatment variable (T) and designate the remaining features as
covariates (W). This ensures that we examine the treatment effect
of each feature individually while accounting for the effects of all
other variables.

5.6 Retraining model
Model retraining is typically done to improve model performance
and ensure it remains relevant with changing data patterns, espe-
cially when new data influences predictive accuracy. Retraining
occurs after identifying top features that impact accident outcomes.
Here, significant features are selected based on metrics like Aver-
age Treatment Effect (ATE) and Individual Treatment Effect (ITE)
scores. Once identified, these features guide the model retraining
process, optimizing it with the most relevant inputs and enhancing
accuracy. Retraining frequency can vary, but it usually depends
on the rate at which new data is generated or existing patterns
change. Models could be retrained periodically, such as quarterly
or semi-annually, to maintain optimal performance.

6 Dataset and analysis
In this section, we describe the datasets utilized in our study and
outline the feature analysis methods used to analyze the data.

6.1 Dataset
For this study, we use 2 accident datasets:

• Ethiopia
• UK

Details of the dataset are provided in the next section.
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6.1.1 Ethiopia. Addis Ababa, the capital of Ethiopia, hosts many
continental and international organizations, including the African
Union, making it a key diplomatic city. However, like many African
cities, it struggles with low motorization rates, as noted in a 2023
study by Ambo et al. [4]. Ethiopia has approximately 1,138,365 reg-
istered vehicles, with about 70% in Addis Ababa. This research ana-
lyzes a dataset from the Sub-city Police Departments (2017–2020),
featuring 32 attributes and 12,316 instances. We used 70% (8,621 in-
stances) for training and 30% (3,695 instances) for testing. Details of
the dataset features are listed in Table 1. In addition to the features
in Table 1, the remaining features pertain to the address.

6.1.2 UK. The UK government data service gathers information on
traffic accidents through detailed police records, which are recorded
in a format called STATS 19 [24]. This comprehensive dataset, cov-
ering the years 2010 to 2012, includes 32 different features. Accident
severity is categorized into three levels: fatal (value 1), serious (value
2), and slight (value 3). In 2010, there were 154,414 reported casual-
ties from traffic accidents in the UK, followed by 151,474 in 2011,
and 1,45571 in 2012. Table 1 lists 22 of these features. Besides those
listed, the remaining features are related to the address information.
Specifically, 70% of the dataset was used for training, allowing the
model to learn from a majority of the data, while 30% was reserved
for testing to assess the model’s predictive.

Accident records for the Ethiopia and UK datasets were first en-
coded in Excel, then converted to CSV, and preprocessed. Initial data
processing involved removing outliers and handling missing values.
In the Ethiopia dataset, missing values were labeled as “Unknown,”
and categorical gaps were filled. The data was further transformed
into a binary format (0,1) using Pandas dummy variables, optimiz-
ing it for efficient model training. Both datasets displayed a marked
class imbalance. In Ethiopia, 84.56% of cases were minor, 14.15%
serious, and 1.28% fatal, while 80.31% of UK records indicated ma-
jor severity. To balance the data, SMOTE was applied to generate
synthetic samples, interpolating minority samples to enhance repre-
sentation and support effective model training. For causal machine
learning, data was organized into X (covariates like weather, road,
and driver details), Y (accident severity), and T (treatment variables
across spatial and temporal factors). This structured framework
supported using an uplift tree classifier, revealing key factors influ-
encing accident severity. After the data pre-processing stage, the
accident dataset is trained using uplift tree classifier [28].

6.2 Feature analysis
Feature analysis is divided into 2 sections:

(1) Feature analysis for Ethiopia
(2) Feature analysis for UK

6.2.1 Feature analysis for Ethiopia. In this study, feature analysis
is conducted by employing ITE and ATE, leveraging the causal
inference capabilities of the Python library UpliftTreeClassifier [27,
42]. As shown in Figure 4, when the road surface condition is "snow"
or "flood over 3 cm deep", then the ITE value is maximum (with value
1) as discussed in Table.4. Similarly, when the light condition is
"darkness -lights unlit" then the ITE value is maximum as shown in
Figure 5. Same trend can be observed in Figure 6, when the features
value of driving experience is "unknown" or there is "no license",

Table 1: Features of Ethiopia and UK accident datasets

Feature Feature Name Dataset
Category
Time Time of the accident Ethiopia
Features Day of the week Ethiopia

Date of accident UK
Year of occurrence of the accident UK

Spatial Longitude UK
Features Latitude UK

Urban or rural area UK
Junction type like traffic signal Ethiopia
Junction detail UK

Road Road type UK
Features Category of the lane Ethiopia

Road surface type Ethiopia
Road surface condition UK
Speed limit UK
Light condition like daylight, etc. Ethiopia,

UK
Weather condition like snowing,
etc.

Ethiopia,
UK

Driver Age of the driver Ethiopia
Features Gender of the driver Ethiopia

Educational level of the driver Ethiopia
Vehicle driver relation Ethiopia
Driving experience of the driver Ethiopia

Accident Accident index UK
Features Number of Vehicles UK

Number of Casualties UK
Type of collision Ethiopia
Vehicle movement like going
straight, etc.

Ethiopia

Cause of accident like drunk driv-
ing, etc.

Ethiopia

Accident severity like fatal injury,
etc.

Ethiopia,
UK

1

1
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0.987440533

Individual Treatment Effect (ITE)
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Figure 4: ITE plot for road surface conditions (Ethiopia)

then the ITE value is maximum i.e. 1. As shown in Figure 7, when
day of the week is Monday, then the ITE value is maximum.

6.2.2 Feature analysis for UK. Figure 8 shows ITE bar plots for
the number of vehicles. The number of vehicles, ranging from 1
to 6, exhibits a narrow and more consistent ITE range, suggesting
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a predictable influence. These differences underscore the need for
targeted interventions and tailored models to address the unique
influence of feature effectively.

The results of this analysis, including the detailed ITE and ATE
scores for the features under investigation, are comprehensively
presented in Section 7.2.

6.3 Feature rankings
The feature rankings for Ethiopia and UK dataset, as shown in
Table 2, obtained using ATE and ITE scores, are applied for model
retraining. Post-retraining results are discussed in Section 7.2 for
both datasets.
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Figure 8: ITE plot number of vehicles (UK)

Table 2: Top selected features for Ethiopia and UK datasets

Sr. No. Ethiopia UK

1 Age of the driver Number of vehicles
2 Educational level Spatial attributes like

Longitude, Latitude
3 Driving experience Temporal attributes like

day, month, and year
4 Road features Weather features
5 Weather features Light condition
6 Number of Vehicles Road features like Road

type, Road surface con-
dition, and Junction de-
tails

7 Evaluation
In this section, we present the evaluation of our proposed approach,
assessing its performance through various metrics and comparing
it to existing methods to determine its effectiveness and suitability
for the given problem.

7.1 Experimental setup
We used accident data from Ethiopia and the UK to evaluate the
model’s performance, conducting experiments in Python 3.12.3
on a server with a 3.31 GHz Intel Xeon CPU and 16 GB RAM. For
causal ML implementation, we utilized the CausalML library, which
provides uplift modeling and causal inference techniques.

7.2 Results based on ATE
The ATE values for features in the UK and Ethiopia accident dataset,
shown in Table 3, reveal varied impacts on accident severity. The
comparison of ATE values between the UK and Ethiopia datasets
reveals significant differences in influential factors. The Table 3
presents the ATE values for various features related to accident
datasets in the UK and Ethiopia. In the UK, the most significant
feature is the "Number of Vehicles," which has an ATE of 1, indicat-
ing a strong influence on accident outcomes. Following closely are
"Latitude" (ATE=0.99491) and "Longitude" (ATE=0.98811), suggest-
ing that geographical factors are crucial in understanding accident
patterns. Other notable features include "Date of accident" (ATE=
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Table 3: Average Treatment Effect for Ethiopia and UK datasets

Feature Name (UK) ATE Feature Name (Ethiopia) ATE
Number of Vehicles 1 Area accident occurred 0.914981
Latitude 0.994912 Weather conditions 0.897513
Longitude 0.988112 Road alignment 0.894179
Date of accident 0.974912 Types of Junction 0.884675
Time of accident 0.972911 Driving experience 0.868067
Day of week 0.964122 Education level 0.867068
Year of occurrence of the accident 0.961121 Lanes or Medians 0.866712
Light condition 0.897513 Day of week 0.864212
Weather condition 0.897513 Number of vehicles 0.851645
Road surface condition 0.884675 Road surface type 0.824984
Junction detail 0.872681 Age band of driver 0.823707
Speed limit 0.867068 Road surface condition 0.795527
Police Force 0.795527 Light conditions 0.784809
Urban or rural area 0.784809 Sex of driver 0.745574

0.97491) and "Time of accident" (ATE= 0.97291), highlighting the
importance of temporal variables. In Ethiopia, the leading feature
is "Area accident occurred" with an ATE of 0.914981, indicating
its substantial impact on accidents. Other critical features include
"Weather conditions" (ATE = 0.897513) and "Road alignment" (ATE=
0.894179), which reflect the importance of environmental and road
conditions. The dataset also emphasizes "Types of Junction" (ATE=
0.884675) and "Driving experience" (ATE= 0.868067), pointing to
the relevance of driver and road characteristics.

Overall, the ATE values reveal that both geographical and tem-
poral factors are vital in the UK, while environmental conditions
and road features play a more significant role in Ethiopia’s accident
dynamics.

7.3 Results based on ITE
Table 4 summarizes the treatment effects of various features related
to road accidents in Ethiopia, highlighting key factors influencing
accident occurrences and severity. The Table 4 summarizes key
features influencing road accidents in Ethiopia, focusing on their
treatment effects as indicated by ITE scores. The top five features
include the age band of drivers, with those aged 31-50 having the
highest ITE value of 0.9888, indicating a strong correlation with
accidents. Accident locations such as hospitals and schools score
1.0, highlighting high-risk zones. Mondays and Fridays exhibit
the highest accident occurrences with ITE scores of 0.9948 and
0.9939, respectively. Additionally, unlicensed drivers and illiterate
individuals both have an ITE score of 1.0, underscoring the critical
link between education and road safety. ITE is vital for quantifying
the impact of these factors and guiding targeted interventions to
reduce accidents.

7.4 Comparison with baselines
Table 5 provides a comparison of accuracy with and without feature
selection using causal ML post-application of uplift tree classifier
for UK and Ethiopia dataset. The analysis uses XGBoost, a powerful
gradient boosting framework, as the baseline model for its high
performance and efficiency. In the UK dataset, the accuracy with-
out selecting features was 92.40%, which improved to 94.11% with

selected features, resulting in an increase of 1.71%. The percentage
improvement in accuracy is approximately 1.85%. This indicates
that while feature selection enhanced the model’s performance, the
increase was modest. Conversely, the Ethiopia dataset showed a
more significant improvement. Its accuracy without feature selec-
tion stood at 91.20%, rising to 95.17%with selected features, marking
an increase of 3.97%. The percentage improvement here is about
4.31%, demonstrating that the selected features played a crucial role
in enhancing predictive capability. Overall, both datasets benefited
from feature selection, but the Ethiopian dataset exhibited a more
pronounced improvement

8 Discussion
This section highlights key findings on factors influencing road
traffic accident severity, vehicle involvement, and temporal/spatial
influences. We discuss potential biases in UK and Ethiopia datasets
and explore the scalability and real-time applications of our models
to inform future road safety interventions.

8.1 Effect of number of vehicles
The "Number of Vehicles" feature is critical in the UK dataset, with
an Average Treatment Effect (ATE) of 1. This indicates that multiple
vehicles significantly influence accident outcomes. As the number
of vehicles involved increases, both the severity and complexity of
incidents rise, resulting in greater casualties and damage. Multiple
vehicle collisions often create a cascade effect, where the initial
impact triggers a series of collisions, complicating rescue efforts
and overwhelming emergency services. Such incidents incur higher
medical costs and longer recovery times, leading to broader societal
impacts. Moreover, these accidents frequently contribute to traffic
congestion and delays, affecting areas beyond the crash site. The
involvement of several vehicles often correlates with higher speeds,
adverse weather, and risky driving behaviors, further complicating
the situation. Understanding these dynamics informs policy deci-
sions, emphasizing the need for effective traffic management and
safety measures to reduce vehicle density and enhance road safety
across the UK.
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Table 4: Summary of Ethiopia accident and treatment effects

Sr. No Name of Feature ITE Key ITE Value
1 Age_band_of_driver 31-50 0.988797932

Under 18 0.987679671
18-30 0.986486486
Over 51 0.983758701

2 Area_accident_occured Hospital areas 1
School areas 1
Residential areas 0.992805755
Office areas 0.992211838
Recreational areas 0.991967871
Industrial areas 0.991701245
Market areas 0.945945946

3 Day_of_week Monday 0.99477534
Friday 0.993891798
Tuesday 0.992156863
Wednesday 0.988494727
Thursday 0.987217306
Saturday 0.981914894
Sunday 0.975247525

4 Driving_experience No Licence 1
Below 1yr 0.996296296
Above 10yr 0.989840348
1-2yr 0.988711195
5-10yr 0.988568588
2-5yr 0.981120201

5 Educational_level Illiterate 1
Writing & reading 0.990384615
Junior high school 0.988840263
Elementary school 0.987538941
Above high school 0.985981308
High school 0.983799705

6 Light_conditions Darkness - lights unlit 1
Daylight 0.990710824
Darkness - lights lit 0.983333333
Darkness - no lighting 0.95

7 Road_allignment Escarpments 1
Steep grade up 1
Tangent road 1

8 Road_surface_conditions Flood over 3cm. deep 1
Snow 1
Wet or damp 0.990196078
Dry 0.987440533

9 Road_surface_type Gravel roads 1
Asphalt roads 0.987938766
Earth roads 0.984693878

10 Number_of_vehicles 6 1
4 1
7 1
3 0.993204983
1 0.988682469
2 0.979627989

Table 5: Comparison of accuracy with and without feature
selection using causal ML post-application of uplift tree clas-
sifier for UK and Ethiopia dataset

Dataset Accuracy without Accuracy with the
selecting features (%) selected features (%)

UK 92.40 94.11
Ethiopia 91.20 95.17

8.2 Effect of temporal and spatial treatments
In our study, we analyze spatial and temporal treatments to assess
their causal effects on road traffic accident severity. Temporal vari-
ables include the time of the accident (ATE = 0.9729), day of the
week (ATE = 0.9641 for the UK, 0.8642 for Ethiopia), and accident
date (ATE = 0.9749). These factors help us understand how tim-
ing influences severity, especially during peak hours. For spatial
treatments, we examine longitude and latitude (ATE = 0.9881), ur-
ban versus rural areas (ATE = 0.7848), and road alignment (ATE
= 0.8942). Our causal model isolates these effects, confirming the
significant influence of spatial and temporal factors on accident
outcomes, guiding future road safety interventions.

8.3 Potential bias
Using datasets from both Ethiopia and the UK strengthens our
study, though we acknowledge certain limitations and biases. These
datasets reflect distinct traffic conditions and socio-economic con-
texts, with Ethiopia showing low motorization and less developed
roads, while the UK represents a highly motorized, structured traffic
environment. Temporal differences add further complexity: the UK
data spans 2010-2012, while the Ethiopian data covers 2017-2020,
meaning advancements in vehicle technology and traffic laws over
time may affect the comparability of results.

8.4 Scalability
This study emphasizes using causal inference and machine learning
to predict road traffic accident severity, which is especially useful
for dynamic traffic management and reducing accident impact. Ap-
plying these models in real time could help authorities identify and
prioritize high-risk zones, enabling more effective decision-making.
Combined with live traffic data, these models could prompt timely
actions, like rerouting traffic, adjusting speed limits, or dispatching
emergency services more efficiently.

9 Conclusion
In this paper, we present a comprehensive causal machine learn-
ing approach for traffic accident analysis that integrates data pre-
processing, sampling, causal inference, and feature analysis. The
process starts with data preparation, followed by SMOTE to balance
classes, enhancing model performance. Causal analysis divides data
into covariates, outcomes, and treatments, allowing a focused study
of factors influencing accident severity. An uplift tree classifier then
assesses how various features affect outcomes, with Individual and
Average Treatment Effects (ITE and ATE) highlighting factors like
driver demographics and road conditions. Our future work will
focus on model scalability and adaptation to regional variations, as
well as improving data quality for broader applicability.
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