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Abstract. The Industrial Internet of Things (IIoT) is a transformative
paradigm that integrates smart sensors, advanced analytics, and robust
connectivity within industrial processes, enabling real-time data-driven
decision-making and enhancing operational efficiency across diverse sec-
tors, including manufacturing, energy, and logistics. IIoT is susceptible to
various attack vectors, with Advanced Persistent Threats (APTs) posing
a particularly grave concern due to their stealthy, prolonged, and tar-
geted nature. The effectiveness of machine learning-based intrusion de-
tection systems in APT detection has been documented in the literature.
However, existing cybersecurity datasets often lack crucial attributes for
APT detection in IIoT environments.
Incorporating insights from prior research on APT detection using prove-
nance data and intrusion detection within IoT systems, we present the
CICAPT-IIoT dataset. The main goal of this paper is to propose a novel
APT dataset in the IIoT setting that includes essential information for
the APT detection task. In order to achieve this, a testbed for IIoT is
developed, and over 20 attack techniques frequently used in APT cam-
paigns are included. The performed attacks create some of the invariant
phases of the APT cycle, including Data Collection and Exfiltration,
Discovery and Lateral Movement, Defense Evasion, and Persistence. By
integrating network logs and provenance logs with detailed attack in-
formation, the CICAPT-IIoT dataset presents foundation for developing
holistic cybersecurity measures. Additionally, a comprehensive dataset
analysis is provided, presenting cybersecurity experts with a strong ba-
sis on which to build innovative and efficient security solutions.

Keywords: Industrial IoT · Advanced Persistent Threats · Data Prove-
nance · Self-Supervised Learning.

1 Introduction

Advanced Persistent Threats (APTs) represent a sophisticated category of cy-
berattacks, where an unauthorized user gains access to a network and remains
undetected for a long period of time. Some attackers aim to harm organizations
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for financial motives or to gain notoriety by damaging a company’s reputation,
and they do not conceal their actions. However, in recent years, another type of
attacker group has risen in prominence, which is characterized by a deliberate
and methodical approach. They employ a “low and slow” strategy with the goal of
either stealing sensitive data from their targets or disrupting their operations [4].
APTs represent a significant threat to critical infrastructure systems and have
been responsible for numerous severe incidents. APT attacks are distinguished
from typical cyberattacks by some key characteristics, such as complexity, persis-
tence, being targeted, and elusiveness. APT attacks typically consist of several
distinct phases, each with specific objectives and strategies. While the exact
phases can vary depending on the attack group and campaign, the following [32]
are common phases in an APT attack: (1) Initial Compromise, (2) Establishing
a Foothold, (3) Privilege Escalation, (4) Reconnaissance, (5) Lateral Movement,
(6) Maintaining Persistence, and (7) Data Collection and Exfiltration.
Indeed, Industrial Internet of Things (IIoT) networks represent a particularly
vulnerable target for APT attacks. Originally centered around general applica-
tions, IoT has extended its influence to diverse sectors, including industry, where
there is an increasing drive to interconnect previously isolated components, fa-
cilitating both intra-component communication and connections to the broader
Internet [30]. Industrial IoT enables the seamless integration of several devices
with sensing, identification, processing, communication, and networking capa-
bilities [14]. Researchers use many system architectures for IIoT systems, such
as Brown-IIoTbed [1], to develop an IIoT environment.
The security and safety of IIoT systems have been the subject of substantial re-
search due to the essential importance and sensitivity of Industrial IoT applica-
tions. As demonstrated by historical occurrences like Stuxnet [29], the Ukrainian
power plant attacks [45], and the TRITON incident [15], attacks on the IIoT can
have significant consequences that go beyond the scope of a company’s opera-
tions and may compromise the safety of citizens and even the entire nation.
Research findings on the security of Industrial IoT reveal the disturbing fact
that IIoT devices are susceptible to weaknesses, as described in [46] and [43].
This paints an alarming picture of the security environment used in current IIoT
applications.
The convergence of critical infrastructure, interconnected devices, and often lim-
ited security measures within IIoT environments makes them an attractive and
high-impact target for sophisticated and persistent adversaries like APT groups.
These attackers seek to exploit vulnerabilities within IIoT systems to achieve
their objectives, which can have significant consequences for industrial opera-
tions and, in some cases, national security. As a result, safeguarding IIoT net-
works from APT attacks is crucial in the realm of cybersecurity.
Traditional threat detection systems, including signature-based and anomaly-
based approaches, face limitations in effectively detecting long-running APT
campaigns [12]. Signature-based systems struggle to detect APTs that leverage
zero-day exploits and new vulnerabilities [18]. Conversely, anomaly-based sys-
tems, that leverage network logs [48], system calls [11], and related system events
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[47], often encounter difficulties in modeling extended system behavior patterns.
These systems are also vulnerable to evasion techniques since they primarily ex-
amine short sequences of system calls and events, thus limiting their ability to
uncover sophisticated APT activities.
According to recent studies [10,23,8,25], data provenance may be a more reliable
data source for identifying APTs. Data provenance depicts the flow of informa-
tion between system entities, such as processes, and objects, such as files and
sockets, as a directed acyclic graph (DAG), shows how a system is being used.
Even when events are separated in time, this representation links the graph’s
causally connected events. Consequently, despite APT-affected systems often
mimicking normal system behavior, the wealth of contextual information inher-
ent in provenance data enhances the ability to distinguish between benign and
malicious events [49]. Despite the demonstrated efficacy of utilizing provenance
data in detecting APT attacks, researchers in the field encounter a significant
challenge: the scarcity of available datasets. Moreover, the existing datasets fre-
quently do not cover APT scenarios in IIoT environments, making it even more
challenging to explore this problem. In addition to that, the APT detection
methods currently proposed often lack compatibility with some features of the
ever-changing APT landscape.
In this research, we introduce CICAPT-IIoT3, an APT attack dataset devel-
oped within an IIoT environment, to assist researchers in security analysis and
developing detection methods. To achieve this, an IIoT testbed was established
in a semi-controlled setting, mirroring real-world industrial operations. A realis-
tic APT scenario, containing key APT phases like data exfiltration and defense
evasion, was then implemented and executed. Raw and processed data collected
during this scenario are also made available, enabling researchers to utilize and
derive new features for enhanced security insights on using provenance data for
the APT detection task. We also develop a self-supervised learning (SSL) model
to process provenance data for APT detection tasks. This model is specifically
designed to be compatible with the unique features of APT attacks and the het-
erogeneous nature of the provenance graphs.
The main contributions of our research are as follows:

– We introduce the CICAPT-IIoT dataset, a novel and comprehensive APT
attack dataset captured within the IIoT environment. This dataset is gener-
ated using a hybrid testbed consisting of real and simulated IIoT components
to demonstrate the complexity and diversity of modern technology systems;

– The dataset contains more than 20 distinct attack techniques divided into
eight main attack tactics that map into the APT attack scenarios, inspired
by the APT29 [33] campaigns. This APT scenario enhances the dataset’s
effectiveness in APT detection research;

– To evaluate the effectiveness of machine learning algorithms in APT-detection
tasks, we applied several ML models on the CICAPT-IIoT dataset and an-
alyzed their performance. Our evaluation uses a provenance-based detection
framework offering insights into the practical challenges and considerations
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in deploying machine learning solutions for APT detection in the IIoT land-
scape;

– We propose a self-supervised based method and use the CICAPT-IIoT dataset
to test and evaluate its performance in provenance-based APT detection.
Our results show the effectiveness of the SSL-based model for the prove-
nance graphs.

The rest of this paper is organized as follows. We discussed the related works
in Section 2. Section 3 provides an overview of the testbed, its different compo-
nents, and the APT attack emulation plan. we also explain the dataset generation
experiments and the dataset properties in this section. Furthermore, a thorough
analysis of the dataset is presented in the section 4. Next, we describe predictive
models for APT detection task in section 5 and evaluate these models perfor-
mance using CICAPT-IIoT dataset in section 6. Finally, Section 7 presents the
conclusion of this research.

2 Related Works

Recent research has explored the utility of provenance data across various do-
mains, including security, reproducibility, data trustworthiness, and intrusion
detection [28]. These studies have demonstrated its potential for improving the
dependability and security of information systems against various threats such as
APTs [31]. Datasets play a crucial role in any attack detection research, enabling
the study and modeling of behavior to identify attack activities [44]. However, the
majority of available datasets are generated for conventional intrusion detection
rather than detecting Advanced Persistent Threats. Such datasets often lack the
complexity inherent in APT cycle phases and typically comprise only network
or system logs. In this section, we provide an overview of the datasets currently
used in the literature for APT detection and general attack detection. Addition-
ally, we offer a brief review of the literature on provenance data, methods for
capturing provenance, and provenance-based attack detection techniques.

2.1 Related Datasets

The significance of datasets in attack detection research cannot be overstated, as
they are fundamental to the development, testing, and refinement of detection
algorithms. High-quality datasets provide a realistic representation of valuable
data such as system logs and network traffic, and include both benign activities
and malicious attacks, that are crucial for training and evaluating intrusion de-
tection systems.
The TON IoT dataset[3] includes telemetry data from IoT/IIoT services and
contains network traffic collected from a realistic representation of a medium-
scale network at an IoT Lab. This dataset includes a variety of cyberattacks,
including scanning attacks, Denial of Service (DoS) attacks, ransomware, and
Man-In-The-Middle (MITM) attacks, among others, providing researchers with
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a comprehensive resource to study, understand, and develop countermeasures
against these threats. The dataset is designed for multi-classification problems,
incorporating labels for normal and attack classes, and sub-classes of attacks
targeting IoT/IIoT applications. DAPT 2020 [34], is a benchmark dataset specif-
ically designed to address the challenges in modeling and detecting APTs. This
dataset includes attacks that are hard to distinguish from normal traffic flows and
encompass both public-to-private interface traffic and internal network traffic.
The APT stages that this dataset covers are Reconnaissance, Foothold Estab-
lishment, Lateral Movement, and Data Exfiltration which are all crucial steps in
APT campaigns.
X-IIoTID [2] is a dataset for intrusion detection in the Industrial Internet of
Things (IIoT) environment. IIoT systems, due to their vast connectivity and de-
ployment of various protocols and devices, present significant security challenges.
This dataset is designed to be both connectivity-agnostic and device-agnostic,
thereby suitable for the heterogeneous and interoperable nature of IIoT environ-
ments. The authors state that X-IIoTD covers the Reconnaissance, Weaponiza-
tion, C&C, and Lateral movement stages of an attack scenario. Edge-IIoTset
[16], is a cybersecurity dataset designed for IoT and IIoT applications, useful for
both centralized and federated learning intrusion detection systems. The dataset
is generated from a custom-built IoT/IIoT testbed incorporating a wide range
of devices, sensors, protocols, and cloud/edge configurations. Edge-IIoTset in-
cludes over 10 types of IoT devices that generate various types of data, such as
temperature, humidity, and ultrasonic sensor readings, and contains data related
to DoS, DDoS, MitM, Reconnaissance, and malware attacks.
The DARPA OpTC dataset [17] contains data from a pilot study aimed at testing
the scalability of DARPA Transparent Computing technologies for cyber defense.
This dataset, generated during a two-week evaluation in a highly instrumented
environment, capturing both benign activities and malware injections across one
thousand Windows 10 endpoints and serves as a critical resource for analyzing
the effectiveness of scaled cyber defense technologies in detecting APTs within
large-scale network environments. CICIoT2023 [36] is an IoT attack dataset de-
signed to aid in the development of security analytics applications for real IoT
operations by executing 33 attacks within an IoT topology of 105 devices, classi-
fying these attacks into seven categories: DDoS, DoS, Recon, Web-based, brute
force, spoofing, and Mirai, all executed by malicious IoT devices targeting other
IoT devices.
Unraveled [35], one of the most recent datasets is a semi-synthetic dataset crafted
to emulate APT attacks. In response to the scarcity of publicly accessible APT
datasets, the creators endeavored to enrich this dataset with a range of sophisti-
cated attack scenarios derived from the MITRE ATT&CK database. Addition-
ally, they designed an Employee Behavior Generation model aimed at replicating
typical employee activities. The dataset is collected during a 6-week period and
contains data from Reconnaissance, Foothold Establishment, Lateral movement,
and Data exfiltration stages of APTs.
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2.2 Provenance Data and Provenance-based Attack Detection

Fig. 1. Sample provenance graphs showing a benign scenario (Left) and an attack
scenario (Right)

Data provenance refers to the documentation or record of the origin, lineage,
and history of data. It includes every step of the creation, modification, and evo-
lution of data over time [24]. Tracking the origins of data, such as where and how
it was created and its evolution through various processing stages and transfers,
are components of data provenance.
Bates et al. [9] introduced the Linux Provenance Modules (LPM), a framework
designed for secure provenance collection on Linux operating systems. Cam-
Flow [40], using a similar architecture, implemented a practical whole-system
provenance system. This system leverages the Linux Security Module (LSM)
and NetFilter hooks, capturing provenance data within the Linux environment.
Some researchers developed cross-platform data provenance platforms that can
collect provenance on different operating systems. For example SPADE [19] is a
provenance solution capable of tracking and analyzing provenance from multiple
possibly distributed sources including OS’s auditing mechanisms.There has also
been some research to introduce the concept of provenance to the IoT world and
use its benefits to mitigate IoT security challenges [26]. Researchers in [6,5,38,42]
have proposed various methods to collect and use provenance data in the IoT
environment.
Since provenance data provides a thorough history and origin of any information
within a system, it has become a valuable tool in intrusion detection systems.
Cybersecurity researchers have explored provenance potential to improve secu-
rity systems [39]. Works such as UNICORN [22] and ANUBIS [7] have utilized
provenance data to train anomaly detection models for identifying APT activi-
ties within target environments.

UNICORN is an anomaly-based detection system designed to mitigate APTs
that utilize data provenance by transforming system execution information into
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a directed acyclic graph (DAG). UNICORN employs graph sketching to create
a scalable, incrementally updatable, fixed-size data structure. ANUBIS, another
provenance-based framework for APT detection, is a machine learning-based
system that uses a Bayesian Neural Network (BNN) for the classification of
the system’s events. This allows ANUBIS not only to detect APTs with high
accuracy but also to explain its predictions, making it a valuable tool for cyber-
response teams.

Figure 1 presents two different provenance graphs. The graph on the left
depicts a benign scenario where a document is accessed, edited by a user, and
subsequently sent to the company server. The graph on the right illustrates
a simplified APT attack scenario: within a compromised system, a malicious
editing process attaches a malicious payload to the file, which is then transmitted
to the server, resulting in its compromise.

3 CICAPT-IIoT - A Semi-Synthetic IIoT APT Dataset

In this section, we present an overview of our data collection setup and the main
components of our system. As APT detection research often suffers from the
lack of realistic, open-source datasets, our research involves developing CICAPT-
IIoT, a semi-synthetic dataset that imitates the characteristics of APT behaviors.
The dataset generation design comprises diverse tools and devices, making it
possible to gather a suitable dataset for APT detection within IIoT systems.
Here we describe the data collection procedure and the various phases of the
data generation process. Next, we explore our attack emulation plan and its
different steps. Finally, we analyze the dataset and discuss the techniques we’ve
used to distinguish between malicious and benign data.

3.1 System Overview

We have developed a simulation testbed to have a controlled environment that
is useful for IIoT research and particularly beneficial for simulating APT scenar-
ios. This testbed is based on the architecture of the Brown-IIoTbed framework
[1]. Our testbed’s structure integrates various virtual and physical components
to mirror the complexity and interactions of real-world IIoT systems. Figure 2
illustrates an overview of the system.
At the heart of our testbed is the NS3 network simulator [37], running on
an Ubuntu host. The NS3 is essential in bridging actual and simulated nodes
through its tap bridge module, allowing us to coordinate a seamless integration
between real and virtual network components. The testbed setup involves two
Ubuntu VMs and two Kali Linux VMs hosted on a machine running NS3. Ubuntu
VM1 acts as the gateway, managing network traffic, and is equipped with tools
like Auditd and SPADE for logging and translating logs into provenance data,
respectively. It also subscribes to MQTT topics, playing a critical role within
the testbed’s MQTT ecosystem. Ubuntu VM2 functions as an MQTT publisher
and SCADA system via SCADABR software, interacting with a PLC simulated
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Fig. 2. Overview of the testbed
on Raspberry Pi1, which operates with OpenPLC and communicates using the
Modbus protocol. Raspberry Pi2 serves as a WiFi access point, enhancing the
network’s connectivity to IoT sensors. Kali VM1 and VM2 are set up as internal
and external threat actors, equipped with MITRE Caldera and various attack
tools, respectively. This sophisticated simulation environment not only generates
comprehensive data including system logs, network traffic, and provenance data
essential for APT research in IIoT environments but also mimics real IIoT oper-
ations to facilitate advanced IIoT security research. Adding devices like cameras,
leakage sensors, and PLCs and using protocols such as MODBUS and MQTT
helps the testbed more accurately replicate an IIoT environment [27]. PLCs en-
able realistic automation and control simulations typical in industrial settings,
and MODBUS and MQTT are common device-to-device communication proto-
cols in IIoT systems. Table 1 shows the testbed components and their roles in
the experiments.

Table 1. List of the testbed components

Device Role

Ubuntu VM1
Gateway
Local Management
MQTT Subscriber

Ubuntu VM2 MQTT Publisher
ScadaBR

Kali VM1 Internal Attacker
Caldera Server

Kali VM2 External Attacker
Raspberry Pi1 OpenPLC
Raspberry Pi2 WiFi Access Point
Litokam Smart Camera Camera
ConnectifyFlood Sensor Flood Sensor
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3.2 Attack Emulation Plan

APT29, also known as ‘The Dukes’ or ‘Cozy Bear’, is a sophisticated cyber threat
group noted for its advanced cyber espionage tactics and persistent attacks. The
group’s activities have had significant impacts, leading MITRE to publish an
adversary emulation plan for APT29 within the framework of MITRE Caldera
[13]. This emulation plan, however, uses tactics and techniques mostly tailored
for Windows environments, which are not directly transferable to Linux sys-
tems. Therefore, we adapted APT29 emulation plan and the MITRE ATT&CK
framework’s Tactics, Techniques, and Procedures (TTPs) to design a customized
attack emulation plan suitable for the Linux-based testbed. This plan aims to
replicate APT29’s operational patterns within the unique environment of the
testbed. Table 2 shows the different APT tactics and techniques used in the
dataset. The developed emulation plan encompasses several stages, each re-
flecting a typical phase in an APT campaign, including Data Collection and
Exfiltration, Deployment of Stealth Toolkits for further activities, Defense and
Discovery Evasion, Maintaining Persistence, Accessing System Credentials, and
Lateral Movement to other components in the network.

3.3 Data Collection and Experiments

The NS3 simulator serves as the primary platform for our testbed, managing
network connections and enabling the monitoring and logging of all network
packets. It operates in Real-Time mode to facilitate the integration of real and
simulated nodes. Along with network logs collected by NS3, system logs are
gathered using the Linux Audit Daemon (Auditd), which leverages the Linux
Auditing System for efficient log capture. These logs are processed by SPADE
[19], a service that generates provenance data, enriching the dataset with an
additional layer of information useful in APT detection.
The experiments were conducted in two phases. The first phase, conducted over
four days, simulated normal system operations to establish a baseline behavior of
the testbed components including VMs, sensors, and Raspberry Pis. The second
phase, spanning three days, simulated an APT attack using APT29 tactics exe-
cuted through Kali VM1 with MITRE Caldera. This phase followed the APT’s
’low and slow’ approach as attack steps are executed in random time intervals
of 45 to 75 minutes to mimic the stealth and persistence typical of APTs and
closely replicate real-world attack dynamics.

3.4 Dataset Properties

The dataset is organized into two folders: phase1 data and phase2 data, each
containing two types of data—provenance data and network packets. The prove-
nance data files are in CSV format and contain the nodes and edges of the
provenance graph. Each node in the provenance data is assigned a unique 32-
digit ID, which is utilized by the edge entries to establish connections between
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nodes in the graph.

# Feature Description Provenance Type
1 id Node identifier All node types
2 type Edge or node type All nodes and edges
3 from Source node ID Edges
4 to Destination node ID Edges
5 uid User Id Process nodes
6 egid Effective group ID Process nodes
7 exe Executable path Process nodes
8 gid Group ID Process nodes
9 euid Effective user ID Process nodes
10 name Executable name Process nodes
11 pid Process ID Process nodes, WDF edges
12 seen time Process seen time Process nodes
13 source Data origin All nodes and edges
14 ppid Parent process ID Process nodes
15 command line Full command line used Process nodes
16 start time Process start time Process nodes
17 event ID Unique event ID All edges
18 time Event time All edges
19 operation Type of operation All edges
20 path File path File,link, directory nodes
21 subtype Subtype of nodes Artifact nodes
22 permissions Access permissions File,link, directory nodes
23 epoch Sequence number Artifact nodes
24 version Version number Artifact nodes
25 Flag Resource access mode Used, WGB edges
26 remote port Port number Network socket nodes
27 protocol Used protocol Network socket nodes
28 remote address IP address Network socket nodes
29 tgid Thread group ID Unknown nodes
30 fd File descriptor Unknown nodes
31 mode Permission setting WGB edges
32 label Node label- attack/benign All nodes
33 subLabel Attack category All nodes

Table 3: Provenance Data Features

Besides the IDs, the provenance data files comprise 32 features in total. How-
ever, due to the heterogeneous nature of nodes and edges that are all in a single
file, not all features apply to every node or edge type, resulting in many fields
being populated with NaN values. Table 3 lists all features provided in the prove-
nance data part of the dataset. The provenance data includes two main node
types: Process and Artifact. The Artifact node type is further categorized into
various subtypes such as file, directory, network socket, link, and unknown, the
latter being used for provenance node types that do not fit into the existing sub-
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types. The other data type in the dataset is the network logs captured using NS3
during the experiments and stored in pcap format. These pcap files can be fur-
ther processed into CSV format. We generate the CSV format from these pcaps
that have the information at the packet level and contain 67 features for each
packet. The last file in the dataset is the Attack Information file, which contains
all necessary information about the attacks performed during the experiments
in phase 2. This information includes attack time, attack PID, and the category
of attack. This file helps the researchers to further analyze the dataset behavior
during the attacks.

path:local/share/gvfs-metadata/root-e6ea00c4.log.JTFCF2
permissions:664

subtype:file
type:Artifact

path:local/share/gvfs-metadata/root-e6ea00c4.log
permissions:664

subtype:file
type:Artifact

eventID:6813
time:1.701469e+09

type:WasDerivedFrom
operation:rename

name:gvfsd-metadata
pid:1950
ppid:1716

seentime:1.701469e+09
type:Process

uid:1000

eventID:6813
time:1.701469e+09

type:WasGeneratedBy
operation:rename write

eventID:6813
time:1.701469e+09

type:Used
operation:rename read

path:local/share/gvfs-metadata/root-c6f09e18.log.J9SCF2
permissions:664

subtype:file
type:Artifact

eventID:6980
time:1.701469e+09

type:Used
operation:rename read

epoch:0
path:local/share/gvfs-metadata/root.F2TCF2

permissions:600
subtype:file
type:Artifact

eventID:6981
time:1.701469e+09

type:Used
operation:rename read

epoch:0
path:local/share/gvfs-metadata/root.J0TCF2

permissions:600
subtype:file
type:Artifact

eventID:6814
time:1.701469e+09

type:Used
operation:rename read

path:local/share/gvfs-metadata/root-c6f09e18.log
permissions:664

subtype:file
type:Artifact

eventID:6980
time:1.701469e+09

type:WasGeneratedBy
operation:rename write

eventID:6980
time:1.701469e+09

type:WasDerivedFrom
operation:rename

path:local/share/gvfs-metadata/root-900795cd.log
permissions:664

subtype:file
type:Artifact

eventID:6703
time:1.701469e+09

type:WasGeneratedBy
operation:rename write

epoch:5
path:local/share/gvfs-metadata/root

permissions:600
subtype:file
type:Artifact

eventID:6814
time:1.701469e+09

type:WasGeneratedBy
operation:rename write

eventID:6814
time:1.701469e+09

type:WasDerivedFrom
operation:rename

epoch:6
path:local/share/gvfs-metadata/root

permissions:600
subtype:file
type:Artifact

eventID:6981
time:1.701469e+09

type:WasGeneratedBy
operation:rename write

Fig. 3. A provenance graph based on a sample of our dataset

Figure 3 displays an example of a provenance graph. This is a subgraph of
the complete provenance graph based on the the CICAPT-IIoT dataset. This
provenance graph shows several rename operations performed on files, resulting
in the generation of a new set of files.

4 Dataset Assessment

In this section, we provide an assessment of the CICAPT-IIoT dataset, evalu-
ating its structure and utility for advancing research in APT detection within
IIoT environments. We begin by presenting general statistics of the dataset to
illustrate its composition and scope, followed by a comparative analysis against
similar datasets. This evaluation aims to highlight the dataset’s attributes and
its applicability in developing robust cybersecurity solutions for the IIoT domain

4.1 General Statistics of the Dataset

The dataset was generated in two phases: Phase 1, which lasted approximately
96 hours, and Phase 2, which lasted about 72 hours. It contains of about 10 GB
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of data. During both phases, network logs and system logs were collected, and
provenance logs were generated using the system logs and SPADE. A detailed
breakdown of the dataset’s segments can be found in Table 4. As shown in the
Table 4, the CICAPT-IIoT dataset is notably unbalanced, with approximately
99.5% of the samples representing normal behavior and only a small fraction
indicating malicious activities, which is typical in APT scenarios. This signifi-
cant imbalance is reflective of real-world conditions in IIoT environments, where
actual attacks are infrequent relative to regular operations.

In such contexts, using oversampling techniques to artificially balance the
dataset by replicating the minority class or generating synthetic samples—can be
counterproductive. Although these methods might facilitate algorithmic training
in the short term, they distort the reality of how APTs manifest within network
systems. By oversampling attack data, the models are trained on scenarios that
are not reflective of actual operational conditions. This training approach can
lead to models that perform well on balanced or altered datasets in testing
environments but fail to detect genuine APT activities when deployed in real-
world scenarios.

Table 4. Data distribution across different phases and data types

Attribute Event type Provenance Data Network Data
Phase 1 Benign 46773 Nodes 12103705 Packets

Phase 2

Benign 52954 Nodes 9535819 Packets
Attack 330 1004
Collection 100 460
Exfiltration 22 42
Credential Access 82 58
Defence Evasion 45 192
Discovery 36 138
Persistence 19 44
C&C 16 56
Lateral Movement 10 14

4.2 Comparison Against Similar Datasets

The CICAPT-IIoT dataset stands out from other datasets in several ways. First,
the inclusion of multiple data sources enhances the analytical capabilities of
researchers, and supports the development of new detection methods that utilize
both network data and provenance logs. Furthermore, as APT attacks are known
for their multi-stage operations, they require a comprehensive coverage of all
associated stages, tactics, and techniques to effectively model APT campaigns
in a cybersecurity dataset. Many existing datasets either do not directly address
all APT tactics, as they only map network-based attacks to APT stages, or
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Table 5. Related datasets analysis

Dataset [16] [36] [2] [3] [17] [34] CICAPT IIoT
(This Work)

IoT/IIoT ✓ ✓ ✓ ✓ ✓
Network Logs ✓ ✓ ✓ ✓ ✓ ✓
Provenance/Host Logs ✓ ✓
Duration N/A 16(H) N/A N/A 7(D) 5(D) 7(D)
Establish foothold ✓ ✓ ✓ ✓ ✓
Collection ✓
Data exfiltration ✓ ✓ ✓ ✓
Command & Control ✓ ✓ ✓ ✓ ✓
Persistence ✓ ✓ ✓ ✓ ✓
Discovery ✓ ✓ ✓ ✓ ✓ ✓ ✓
Credential Access ✓ ✓ ✓ ✓ ✓ ✓
Lateral movement ✓ ✓ ✓ ✓
Defence Evasion ✓ ✓

they fail to cover all the stages necessary to fully represent an APT campaign.
In contrast, the CICAPT-IIoT dataset aims to provide a complete and realistic
portrayal of an APT attack, encompassing the most relevant and authentic stages
and techniques. Table 5 provides an analysis of some of the related datasets. The
comparison of these datasets is based on several key factors: the environment in
which the data was collected, the types of data included, and the APT tactics
they cover.

5 Predictive Model for APT Detection

Fig. 4. Adopted approach to produce and analyze the dataset
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Figure 4 shows the steps taken in this work to generate and analyze this
dataset. After data collection and labeling, the provenance and network data
are available to use for attack detection tasks. However, given the inherent
graph structure of provenance data, the direct application of ML techniques
is impractical. Therefore, an embedding method is needed to generate vector
embeddings for each node in the graph. These embeddings are then utilized as
inputs for various classification models to assess the dataset’s effectiveness in
machine learning-based APT detection tasks.

5.1 Features

Due to the heterogeneous nature of the data, encompassing various types of
nodes and edges, each node type is associated with a specific subset of applicable
features. The features used for each node and edge type are detailed in the table
below:

Table 6. Selected features for different node and edge types

Node/Edge Type Attributes
Network Socket Nodes epoch, remote port, remote address
Process Nodes uid, egid, exe, gid, euid, name
File Nodes path, permissions, epoch
Directory Nodes path, permissions
Link Nodes path, permission, epoch
Unknown Nodes version, tgid, fd
WTB Edges type, operation
WGB Edges type, operation
USED Edges type, operation
WDF Edges type, operation

We select these features based on the values associated with them in the
dataset. Specifically, in the feature selection process, we ensure that each fea-
ture is relevant to the specific node type it describes. For instance, the “remote
port" feature is used exclusively for the Network Socket node type because it is
inherently related to network connections and has valid values for these nodes.
Conversely, this feature is not applicable to Process nodes and therefore has
NaN values for this node type. As a result, the “remote port" feature is excluded
from the set of features describing Process nodes to maintain the relevance and
accuracy of the feature sets for each node type. This approach ensures that the
features chosen are meaningful and contribute to differentiating between nodes
within the same category, which enhances the analysis of the provenance graph.

5.2 Node2Vec Based Embedding

Node2Vec [20], a popular technique, is an algorithm that generates vector repre-
sentations of nodes on a graph. Using random walks, Node2Vec efficiently sam-



16 E. Ghiasvand et al.

ples diverse neighborhoods that capture each node’s essential structural proper-
ties and contextual relationships. We employ Node2Vec with a walk length of 10
to generate 64-dimensional vector representations of the nodes in the provenance
graph of the dataset.

5.3 Self-Supervised Learning Based Embedding

Fig. 5. Proposed self-supervised framework

Although Node2Vec embeddings offer a foundational understanding of prove-
nance graphs, this method struggles with provenance graphs and APT detection
tasks due to its inherent limitations. For instance, Node2Vec is designed for ho-
mogeneous graphs, which means, it cannot effectively handle the heterogeneity
and evolving structure of provenance graphs crucial for identifying complex APT
activities.
Due to these limitations, we present our Self-Supervised Learning (SSL) based
model, which is specifically designed to learn node representations from prove-
nance graphs and is based on Heterogeneous Deep Graph Infomax (HDGI) [41].
We use the Contrastive HDGI method and leverage the HeteroGraphSage as our
HDGI encoder. One of the key components of the HDGI model is the encoder
that is responsible for processing the graph. While many heterogeneous graph
embedding methods utilize MetaPath based approaches, which rely on prede-
fined sequences of edges, this technique is not directly applicable for provenance
graphs. The dynamic nature of data interactions in provenance graphs makes
it challenging to define relevant paths. Therefore, we utilize a modified Graph-
SAGE [21] model that is adjusted to handle heterogeneous graphs effectively.
Furthermore, SSL models do not rely on labeled data, making these models
suitable to adapt to the nature of APTs. Other crucial aspects of our model’s
design are the adaptations of the HDGI corruption function, discriminator, and
readout function to suit the heterogeneous nodes of provenance graphs.
We use this SSL-based model to generate 64-sized vector embeddings for the
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nodes in the provenance graph. These embeddings not only reflect the node’s
own attributes but also embody contextual insights and relational data from
its immediate environment, enhancing the overall data representation. Figure 5
presents our proposed framework for using SSL in the APT detection task.

Encoder Function GraphSage (Graph Sample and AggreGatE) [21] is a neural
network model designed for graph-based data that generalizes the embedding
learning process to graphs that are continuously growing. The key innovation of
GraphSage is its ability to generate embeddings by sampling and aggregating
features from a node’s local neighborhood.

h
(k)
N (v) = AGGREGATEk

(
{h(k−1)

u : u ∈ N (v)}
)

(1)

As described in Equation 1, the features of node v’s neighbors are aggregated
to compute the node’s new feature representation at each layer where:

– h
(k−1)
u are the features of neighbor nodes u of node v at layer k − 1.

– N (v) denotes the set of neighbor nodes of v.
– AGGREGATEk is an aggregation function, such as mean, sum, or max.

Our Heterogeneous GraphSAGE model is designed to work across diverse edge
types inherent in heterogeneous graphs. The model leverages SAGEConv layers,
each tailored to specific edge types as defined in the graph’s metadata. This de-
sign enables it to handle the complexities and different types of edge interactions
within such graphs. The model structure includes multiple layers of these convo-
lutions, allowing for deeper feature integration across multiple hops in the graph.

Corruption Function The corruption function is crucial in self-supervised
learning models like Deep Graph Infomax, primarily for generating negative sam-
ples that facilitate contrastive learning. This function alters the graph’s structure
and node features to create a corrupted version of the original graph, which serves
as a negative sample. By differentiating between these negative samples and the
original, unaltered graphs, the model learns to develop robust and generalizable
node embeddings that capture the essential characteristics of the graph. This
process enhances the model’s ability to understand and represent the fundamen-
tal properties of the graph effectively.

Readout Function The readout function in graph neural networks is crucial for
converting node-level information into a graph-level representation, which is vi-
tal for understanding the entire graph’s structure, especially in applications like
contrastive self-supervised learning. Standard readout methods, such as sum-
mation, which work well for homogeneous graphs, do not suit heterogeneous
graphs like provenance graphs, as they tend to overlook the unique properties
of different node types. To overcome this, readout functions need adaptation to
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Algorithm 1 Heterogeneous graphs readout function
Input: embeddings - Heterogeneous graph embeddings
Output: graph_summary - Summarized embeddings

1: function readout_function(embeddings)
2: for node_types_embedding ∈ embeddings do
3: types_embedding ← mean(node_types_embedding)
4: graph_summary.append(types_embedding)
5: end for
6: return graph_summary
7: end function

handle the complexity of heterogeneous graphs. Our modified readout function
processes each node type individually, ensuring that the overall graph represen-
tation maintains the distinct characteristics of each node type, thus preserving
the structural and semantic integrity of heterogeneous graphs according to Al-
gorithm 1.

6 APT Detection Model Evaluation

In this section, we analyze the provenance data component of the CICAPT-IIoT
dataset to evaluate its effectiveness for provenance-based APT detection tasks.
To assess the effectiveness of the provenance data component of the CICAPT-
IIoT dataset in machine learning-based detection, we develop three evaluation
methods. Each method utilizes node embeddings generated using the methods
described in sections 5.2 and 5.3 for machine learning classification tasks. The
primary goal of these classification methods is to accurately identify nodes la-
beled as malicious within the provenance graphs. The methods used to evaluate
the dataset are as follows:

1. Binary Classification: Initially, the problem is defined as a binary classi-
fication task, categorizing all nodes as malicious or benign. This step aims
to establish a baseline for detecting harmful entities within the system.

2. Multi-Class Classification: Going beyond binary classification, the anal-
ysis was expanded to include multi-class classification. This involved not only
identifying benign nodes but also classifying the attack types.

3. Attack Stages Detection: The final experiment in the classification ap-
proach involved defining four distinct stages of attack and correlating spe-
cific attack steps to these stages, thereby creating more meaningful classes of
attacks. Attack tactics were grouped based on their objectives and function-
alities, resulting in this four distinct, commonly observed attack stages. Each
attack stage was then treated as a separate binary classification problem.

6.1 Results and Discussion

In this section, we present the results obtained from the evaluation methods, de-
scribed above and then we provide a discussion about the dataset applicability
and the effectiveness of employed methods. The accuracy scores were notably
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Table 7. Results of the Node2Vec-based
binary classification

Model Acc Recall F1
XGBoost 0.9982 0.7161 0.8270
Extra Trees 0.9981 0.7072 0.8218
k-NN 0.9980 0.7161 0.8157
Random Forest 0.9979 0.6600 0.7881
AdaBoost 0.9961 0.4741 0.6001
Decision Tree 0.9946 0.6471 0.5997
SVM 0.9943 0.2940 0.3900
Naive Bayes 0.9484 0.5482 0.1170

Table 8. Results of the Node2Vec-based
multi-class classification

Model Acc Recall F1
XGBoost 0.9964 0.3842 0.4012
k-NN 0.9966 0.4046 0.4182
Random Forest 0.9967 0.3913 0.4242
AdaBoost 0.9934 0.1820 0.1954
SVM 0.9969 0.3876 0.4151
Extra Trees 0.9967 0.3913 0.4170
Decision Tree 0.9935 0.3735 0.3553
Naive Bayes 0.8203 0.4564 0.2546

Table 9. Models performance metrics for Node2Vec-based attack stage detection

Attack Stage Model Accuracy Recall Precision F1-Score

Collection and Exfiltration
XGBoost 0.9991 0.6278 0.9732 0.7446

Random Forest 0.9988 0.5069 0.9750 0.6546
AdaBoost 0.9987 0.5306 0.8714 0.6451

Credential Access and C&C
XGBoost 0.9993 0.6405 1.0000 0.7719

Random Forest 0.9993 0.6403 1.0000 0.7698
AdaBoost 0.9994 0.7143 0.9333 0.8031

Defense Evasion and Persistence
XGBoost 0.9993 0.4500 1.000 0.5931

Random Forest 0.9990 0.1900 0.6000 0.2800
AdaBoost 0.9992 0.4100 0.8167 0.5098

Discovery and Lateral Movement
XGBoost 0.9995 0.4083 0.8000 0.5406

Random Forest 0.9993 0.1500 0.4000 0.2100
AdaBoost 0.9994 0.4000 0.8083 0.5357

high for all ML models in every classification tasks. However, due to the sig-
nificant class imbalance in the dataset—approximately 99.5% of instances are
labeled as benign, the accuracy alone may not be informative enough. As a re-
sult, our evaluation puts more weight on criteria like Recall and the F1 score.
Table 7 presents the performance metrics of binary classification models that uti-
lize embeddings generated by the Node2Vec method. While the results display
high overall accuracy for all the models, the average recall score is around 70%.
The good performance of these models, despite utilizing an embedding method
like Node2Vec, underscores the applicability of the CICAPT-IIoT dataset for
graph-based APT detection tasks. The overall performance of all models de-
creases in the attack classification task, as shown in Table 8, due to the in-
creased complexity of this classification challenge. These results suggest that
while it is possible to detect malicious nodes in the provenance graph using
simpler embedding methods, accurately classifying the attack categories proves
more challenging and requires more sophisticated approaches.

The results of the Node2Vec-based attack stage detection are shown in Table
9. All stages are detectable by machine learning models with an average recall
score of approximately 60%. This demonstrates that defining distinct attack
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Table 10. Results of the SSL-based bi-
nary class classification

Model Acc Recall F1
Extra Trees 0.9986 0.8444 0.8785
Random Forest 0.9986 0.8232 0.8760
XGBoost 0.9984 0.8359 0.8638
Decision Tree 0.9983 0.8361 0.8615
AdaBoost 0.9980 0.7281 0.8153
k-NN 0.9978 0.7629 0.8097
Naive Bayes 0.5143 0.9699 0.0242

Table 11. Results of the SSL-based
multi-class classification

Model Acc Recall F1
XGBoost 0.9975 0.5816 0.6277
k-NN 0.9971 0.4340 0.4724
Random Forest 0.9975 0.5789 0.6299
AdaBoost 0.9934 0.1850 0.1670
Extra Trees 0.9973 0.5657 0.6032
Decision Tree 0.9967 0.5471 0.5264
Naive Bayes 0.4284 0.3139 0.2338

stages can be effective for detecting APT attacks and providing a holistic view
of the APT campaign. However, improvements may be necessary, suggesting the
need for more advanced approaches to enhance performance.
These results from Node2Vec embeddings, demonstrate the potential of machine
learning methods to classify APTs within IIoT operations. Indeed, this serves as
a baseline for any machine learning-based APT detection task.
To employ an embedding method better suited to the features of our dataset,
we utilize our proposed SSL model described in Section 5.3, applying the same
evaluation methods for consistency in our analysis. Table 10 shows the results of
the binary classification task using the SSL method. All models show improved
performance compared to the Node2Vec model, with recall scores approximately
10% higher. These improvements suggest that SSL-based detection methods have
a better capability of identifying malicious nodes within the provenance graph.
These improvements are also noticeable in Table 12, where we utilized SSL-based
embeddings for the attack stage detection task. Here, recall and F1 scores have
shown a significant boost, further validating the effectiveness of SSL methods in
more complex classification scenarios.
The performance of the SSL model compared to the baseline approach empha-
sizes that APT detection tasks using provenance graphs require methods tailored
to the unique characteristics of such attacks and their data types. Figure 6 shows
the F1-score comparison of the Node2Vec and SSL-based approach in the attack
stage detection task.

Fig. 6. Attack stage detection comparison
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Table 12. Models performance metrics for SSL-based attack stage detection

Attack Stage Model Accuracy Recall Precision F1-Score

Collection and Exfiltration
XGBoost 0.9992 0.7294 0.8881 0.7897

Random Forest 0.9991 0.7292 0.8784 0.7852
AdaBoost 0.9991 0.7292 0.8784 0.7852

Credential Access and C&C
XGBoost 0.9999 0.9262 0.9732 0.9456

Random Forest 0.9999 0.9262 1.0000 0.9589
AdaBoost 0.9998 0.9262 0.9708 0.9446

Defense Evasion and Persistence
XGBoost 0.9996 0.7300 0.9300 0.7998

Random Forest 0.9996 0.7100 0.9417 0.7920
AdaBoost 0.9993 0.6850 0.7693 0.7060

Discovery and Lateral Movement
XGBoost 0.9997 0.6833 0.9417 0.7574

Random Forest 0.9997 0.6500 0.8417 0.7074
AdaBoost 0.9996 0.6833 0.7750 0.7057

7 Conclusion

Given the escalating threat of APT attacks on IIoT systems, developing effective
detection solutions is crucial. Datasets are central to these efforts as they enable
the development of defenses against such sophisticated threats. In this paper, we
present CICAPT-IIoT, a dataset designed for IIoT environments, aimed at help-
ing researchers in security analysis and the design of detection techniques against
APTs. The dataset contains over 20 well-known attack techniques, forming 8 dif-
ferent tactics commonly utilized in APT campaigns. The collected data in prove-
nance and network log formats are available in the CIC website4. Furthermore,
we provide a thorough analysis of the dataset using well-known machine learn-
ing models to aid the researchers in developing more effective methods. Finally,
we use the CICAPT-IIoT dataset to propose a self-supervised learning-based
method for the APT detection task.

Several areas remain open for exploration in our future work. First, our
dataset can be utilized to develop and refine real-time detection algorithms capa-
ble of identifying threats as they unfold. Additionally, incorporating more diverse
IIoT devices and attack scenarios would further improve the generalizability of
detection models.
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